

REPORT

Hydrogeological Investigation

Proposed Mixed-Use Development Fergus, Ontario

Submitted to:

Tatham Engineering Ltd.

115 Sanford Fleming Drive, Suite 200 Collingwood, Ontario L9Y 5A6

Submitted by:

WSP Canada Inc.

6925 Century Avenue, Suite #100, Mississauga, Ontario, L5N 7K2, Canada 1 905 567 4444

20141301

April 4, 2023

Distribution List

E-copy - Tatham Engineering Ltd.

E-copy - WSP Canada Inc.

i

Table of Contents

1.0	INTR	ODUCTION	1
2.0	BACI	(GROUND	1
	2.1	Site and Project Description	1
	2.2	Topography, Drainage and Natural Heritage Features	1
	2.3	Physiography and Geology	2
	2.4	Wellhead Protection Areas (WHPA) and Significant Groundwater Recharge Areas (SGRA)	2
	2.5	Water Well Records	2
3.0	SITE	CHARACTERIZATION	3
	3.1	Drilling and Monitoring Well Installation	3
	3.2	Subsurface Soil Conditions	4
	3.3	Water Level Monitoring	4
	3.4	Hydraulic Testing	5
	3.5	Guelph Permeameter Testing	6
	3.6	Groundwater Quality	7
4.0	DISC	USSION	8
5.0	CLOS	SURE	9
TAE	SLES		
Tabl	e 1: Su	mmary of Estimated Hydraulic Conductivity	6
Tabl	e 2: Su	mmary of Estimated Infiltration Rates	7
Tabl	e 3: Su	mmary of Groundwater Quality Exceedances and Turbidity	8

FIGURES

Figure 1 - Key Plan

Figure 2 – Site Plan

Figure 3 - Regulated Areas

Figure 4 - Quaternary Map

Figure 5 – Wellhead Protection Areas

Figure 6 – Significant Groundwater Recharge Areas

Figure 7 - Ministry Recorded Wells

Figures 8A & 8B – Site Section A-A' and B-B'

Figure 9 – Groundwater Flow (March 12, 2021)

APPENDICES

APPENDIX A

Important Information and Limitations of this Report

APPENDIX B

Provided Drawings

APPENDIX C

MECP Water Well Record Summary

APPENDIX D

Record of Borehole Sheets & Grain Size Distribution Curves

APPENDIX E

Water Level Depths and Elevations

APPENDIX F

Hydraulic Conductivity Testing

APPENDIX G

Groundwater Analytical Results

1.0 INTRODUCTION

WSP Canada Inc. (WSP), previously Golder Associates Ltd. (Golder), has been retained by Tatham Engineering Ltd. (Tatham) to conduct a hydrogeological investigation for a proposed mixed-use development to be located in the South Fergus Secondary Plan area within the Township of Centre Wellington, Ontario (the site). The location of the site is shown on the Key Plan, Figure 1. The purpose of this hydrogeological investigation was to characterize the existing hydrogeological conditions at the site.

This report provides the results of the hydrogeological investigation and should be read in conjunction with the "Important Information and Limitations of This Report" (Appendix A). The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report. The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation, or if the project is not initiated within eighteen months of the date of the report, WSP should be given an opportunity to confirm that the recommendations in this report are still valid.

2.0 BACKGROUND

2.1 Site and Project Description

The site is located in Fergus, Ontario and is bounded by Guelph Street to the west, Scotland Street to the east, 2nd Line to the south and McQueen Boulevard to the north. As shown on the Site Plan, Figure 2, the site is divided by Tower Street South (Highway 6) and consists of properties located both east and west of Tower Street South. The site consists of approximately 147.5 hectares (ha) of undeveloped land and is currently a mixture of treed areas, agricultural fields and residential homes. A storm water management (SWM) facility is located immediately east of Tower Street South and north of the site.

As shown on the Preferred Land Use Plan prepared by MHBC Planning Ltd. (dated May 26, 2022; see Appendix B), the proposed mixed-use development is generally comprised of low and medium density residential blocks, with mixed-use corridor and gateway commercial blocks located to the east and west of Tower Street South, a future school block, a business park, natural heritage areas, neighbourhood and community parks, six SWM ponds and internal roads.

2.2 Topography, Drainage and Natural Heritage Features

The site is located within the Upper Middle Grand River Subwatershed of the Grand River Watershed. Grand River is located approximately 800 metres (m) northwest of the site. In general, the site drains towards a municipal drain referred to as "Nichol Drain No. 2", which is located in the central portion of the site, beginning east of Tower Street South and flowing in a southwest direction through the SWMF and towards Swan Creek. A detailed summary of drainage patterns at the site is provided in the South Fergus Master Environmental Servicing Plan (MESP) & Secondary Plan prepared by Tatham (Tatham, 2022), and the Existing Drainage Plan is provided in Appendix B.

Based on available on-line Grand River Conservation Authority (GRCA) mapping (https://maps.grandriver.ca), three Provincially Significant Wetlands (PSW's) are located at the site and are generally located adjacent to Nichol Drain No. 2. The three PSWs are approximately 5.1 ha, 2.0 ha and 2.1 ha in areas from east to west, respectively (refer to Figure 2). Also, a relatively large PSW, approximately 23.4 ha in size, is located west of the site on the west side of Guelph Street and an unevaluated wetland, approximately 0.7 ha in size, is located approximately 325 m northeast of the site.

GRCA mapping indicates that portions of the site adjacent to Nichol Drain No. 2 and the three PSW's are located within GRCA regulated areas, as shown on Figure 3, Regulated Areas.

2.3 Physiography and Geology

The site is mapped within the physiographic region of southern Ontario known as the Guelph Drumlin Field. Physiographic mapping in the vicinity of the site indicates a drumlinized till plain. According to published mapping and as presented on Figure 4, Quaternary Map, the surficial soil conditions are composed of stone-poor sandy silt- to silty sand-textured glacial till overlain by sandy and gravelly glaciofluvial deposits. The geologic mapping is generally consistent with the conditions encountered during the site-specific subsurface investigation (discussed below in Section 3.2).

2.4 Wellhead Protection Areas (WHPA) and Significant Groundwater Recharge Areas (SGRA)

Based on available GRCA mapping (https://maps.grandriver.ca), one public use well (no. 6705606) is located approximately 400 m north of the site and one municipal well (no. 6715276) is located approximately 1.3 kilometres (km) northwest of the site. The site is located within the Wellhead Water Quantity Zone in an area designated by the GRCA as Significant Risk. Further, portions of the site are located within areas designated as Wellhead Protection Areas (WHPA)-B/C/D, or the 2-, 5- and 25-year travel time zones, respectively, as shown on Figure 5, Wellhead Protection Areas. Refer to Section 2.5, Water Well Records, for further discussion on the public use well (no. 6705606).

Portions of the site are located within a Significant Groundwater Recharge Area (SGRA), as shown on Figure 6, Significant Groundwater Recharge Areas. A SGRA is defined in O. Reg. 287/07 as an area within which it is desirable to regulate or monitor drinking water threats that may affect the recharge of an aquifer.

2.5 Water Well Records

Water well records were obtained from the Ministry of the Environment, Conservation and Parks (MECP). Approximately 93 water well records were reported for wells located within 500 m of the site, 10 of which are reported to be located on the site (nos. 7129536, 6713976, 7047856, 6706231, 6715679, 6704215, 6705444, 6715788, 6712498 and 6701780). The locations of the wells with reported water well records are shown on Figure 7, Ministry Recorded Wells. A table summarizing the water well record data is provided in Appendix C, MECP Recorded Wells. It is noted that, historically, there was not a requirement to register dug wells with the MECP, and they can be under-represented in the water well record database.

Little information was provided on 11 of the records (nos. 7129536 [on site], 7047857, 7047856 [on site], 6715145, 7184231, 6714798, 6715788 [on site], 7042040, 7042039, 7194694 and 7203122), which are not discussed further. The remaining 82 wells were constructed between 1948 and 2012 and include 7 test holes/observation wells (including no. 6715679 located on the site) and 75 water supply wells. The water supply wells are comprised of:

One public use well (no. 6705606), located approximately 400 m north of the site. This deep drilled bedrock well was installed in July 1975 and is situated on the east side of the intersection of McQueen Boulevard and Scotland Street, with a ground surface elevation of approximately 422.1 m above sea level (masl), and with a reported well depth of 124.4 m. It is noted that the municipal well discussed in Section 2.4 (no. 6715276) is located more than 500 m from the site (i.e., 1.3 km northwest of the site) and is a deep drilled bedrock well with a reported well depth of 79.5 m;

• One municipal use well (i.e., no. 6712498), located on the west side of the site. This municipal use well was constructed in March 1998 and has a ground surface elevation of approximately 406.3 masl. The well is screened deep in the bedrock unit with a reported well depth of 128.0 m. The current status of this well is not known to WSP, however, it is noted that available GRCA mapping does not indicate that there is an active municipal supply well at this location;

- Sixty-five domestic wells, all of which are drilled wells with well depths ranging from about 19.5 m below ground surface (mbgs) to 78.6 mbgs, two of which are located on the site (nos. 6713976 and 6705444);
- Six livestock wells with well depths ranging from about 11.3 mbgs to 128.9 mbgs, three of which are located on the site (nos. 6706231, 6704215 and 6701780);
- One commercial well with a well depth of 39.6 mbgs; and
- One well of unknown use with a depth of 57.9 mbgs.

A door-to-door private water well survey was carried out on June 30th, 2022, at a total of 13 properties fronting onto either Guelph Street, Scotland Street, Jones Baseline or 2nd Line. The purposes of the well survey were to assess the locations of existing groundwater users and private wells; to assess the aquifers being utilized in the vicinity of the site; to document existing well conditions based on information supplied by the well owners; and to assist in assessing the potential impacts of the proposed development on local groundwater users.

Well owners were asked to complete a water well survey form, which requested basic information on water use, well construction, existing well conditions, and historical problems. Given the COVID-19 pandemic situation and the physical distancing restrictions in place at the time of the survey, one attempt was made to contact the residences and the well survey forms were left at the door, where possible, with information on how to return it to WSP. The well survey form was returned from 1 address; no responses were received from the remaining residences. Based on the information provided in the single survey response, a deep drilled well is present on the site at 935 Scotland Street (well approximately 70 m deep) and is interpreted to utilize the bedrock aquifer.

3.0 SITE CHARACTERIZATION

3.1 Drilling and Monitoring Well Installation

As a part of this hydrogeological investigation, ten boreholes (BH20-1 to BH20-10) were advanced to depths ranging from approximately 7.7 mbgs to 12.7 mbgs in December 2020 and January 2021. The locations of the boreholes are provided on Figure 2. Single 50-millimetre (mm) diameter monitoring wells were installed in BH20-2 to BH20-10, with nested wells (i.e., one deep and one shallow monitoring well) installed in BH20-6, BH20-8 and BH20-10. A sand filter pack was placed to surround the screen in each well. Above the screen, the annulus surrounding the PVC riser pipe was backfilled to the ground surface with bentonite pellets. Each monitoring well was completed with a protective monument-style protective casing set in concrete.

The field work for this investigation was monitored by a member of our field staff, who arranged for the clearance of underground services, observed the drilling and logged the boreholes. The soil samples obtained during this investigation were described in the field, placed in appropriate containers, labelled and transported to our Whitby laboratory for further examination and selective classification testing (natural water content and grain size distribution testing).

In addition, three shallow staff gauge (SG) and piezometer (P) pairs, SG1/P1 to SG3/P3, were manually installed in Nichol Drain No.2, as shown on Figure 2. All piezometers are 19-mm inside diameter stainless steel drive

points, installed to approximate depths of 1.0 mbgs to 1.5 mbgs. The three pairs were installed to assess the vertical hydraulic gradient.

The as-installed borehole, staff gauge and piezometer locations and elevations (referenced to a geodetic datum) were surveyed by the project surveyor and provided to WSP.

The subsurface soil and groundwater conditions encountered in the boreholes, and details of the monitoring well installations are provided on the Record of Borehole sheets (Appendix D). It should be noted that the boundaries between the strata on the borehole records have been inferred from drilling observations and non-continuous sampling. They generally represent transitions from one soil type to another and should not be inferred to represent exact planes of geological change. Further, conditions will vary between and beyond the boreholes.

3.2 Subsurface Soil Conditions

The subsurface soils encountered are consistent with geological mapping for the area, and generally consisted of topsoil and localized fill soils overlying non-cohesive deposits (ranging in gradation from gravel and sand to sandy silt) and/or glacial till deposits (ranging in gradation from gravelly silty sand till to silty clay till). Localized cohesive deposits of silty clay to clayey silt were encountered at varying depths in BH20-2, BH20-3 and BH20-7.

A deposit of wet sand and gravel was encountered in BH20-1 beneath the glacial till soils at an approximate depth of 6.8 mbgs, and a deposit of wet sand was encountered beneath the silty clay soils in BH20-7 at an approximate depth of 5.3 mbgs.

The Record of Borehole sheets and grain size distribution curves for selected soil samples are provided in Appendix D. Inferred cross-sectional drawings are provided in Figures 8A and 8B.

3.3 Water Level Monitoring

Groundwater levels were measured manually in the monitoring wells on January 19 and 29, March 12, June 11, July 23 and November 19, 2021, and June 30, July 5 and July 19, 2022. Water level depths and elevations are provided in Table E-1, Water Level Depths and Elevations (Appendix E). It should be noted that these observations reflect the groundwater conditions encountered at the time of the field investigation and some seasonal and annual fluctuations should be anticipated.

The depth to groundwater measured in the monitoring wells ranged from -0.12 mbgs (i.e., 0.12 m above ground surface; measured in BH20-7 on March 12, 2021) to 4.05 mbgs (BH20-10-D [deep] on July 23, 2021) and from elevations of 404.38 m (BH20-8-D [deep] on July 23, 2021) to 420.28 m (BH20-10-D [deep] and BH20-10-S [shallow] on March 12, 2021) on the dates monitored. The groundwater elevation data on March 12, 2021, are shown on Figure 9, Groundwater Flow. In general, shallow groundwater flow is inferred to follow topography, with flow in an eastern or western direction towards Nichol Drain No. 2, depending on location, as shown on Figure 9.

A total of 3 nested wells were installed at the site (BH20-6-S/D, BH20-8-S/D and BH20-10-S/D). The groundwater elevations in BH20-6-S (shallow) and BH20-8-S (shallow) were higher than the groundwater elevations in the deeper wells on all monitoring events, indicating a downward vertical gradient at those locations on those dates. Therefore, the groundwater levels measured in BH20-6-D (deep) and BH20-8-D (deep) are not considered representative of water table conditions. The groundwater elevations in BH20-10-S (shallow) and BH20-10-D (deep) were approximately equal on all monitoring events, indicating a neutral vertical gradient.

At the staff gauge and piezometer pair SG1/P1, the vertical gradient was upwards on the monitoring events on January 19, March 12 and November 19, 2021, and was downwards on the monitoring events on June 11 and July 23, 2021. The watercourse was observed to be frozen at the location of SG1 on January 29, 2021, and a staff gauge reading could not be measured. Also, SG1 was observed to be destroyed on June 30, 2022, and therefore no readings could be measured on June 30, July 5 and July 19, 2022.

At the staff gauge and piezometer pair SG2/P2, the vertical gradient was upwards on the monitoring events on January 19, March 12, June 11, and November 19, 2021, and was downwards on the monitoring events on July 23, 2021, June 30, July 5 and July 19, 2022. The watercourse was observed to be frozen at the location of SG2 on January 29, 2021, and a staff gauge reading could not be measured.

At the staff gauge and piezometer pair SG3/P3, the vertical gradient was upwards on the monitoring events on March 12 and November 19, 2021, and was downwards on the monitoring events on June 11 and July 23, 2021. The watercourse was observed to be frozen at the location of SG3 on January 19 and 29, 2021, and a staff gauge reading could not be measured. Also, the watercourse was observed to be dry at the location of SG3 on June 30 and July 19, 2022.

Automatic data loggers (i.e., pressure transducers) were installed in BH20-2, BH20-4, BH20-6-S (shallow), BH20-8-S (shallow), BH20-8-D (deep), BH20-10-S (shallow) and P2 on January 29, 2021, and set to record every six hours. The data loggers were downloaded on July 5, 2022. It is noted that the data logger installed in P2 appears to have malfunctioned and therefore no data could be obtained. Daily precipitation data was obtained from Environment and Climate Change Canada (ECCC) for the Fergus Shand Dam Meteorological Station (ID 6142400), which was the nearest station to the site with daily precipitation data for this period. Hydrographs of the groundwater level data with daily precipitation data are provided as Figure E-1 and graphs of the groundwater temperature data are provided as Figure E-2 (Appendix E). The data indicate that the groundwater elevation in all monitoring wells fluctuated seasonally, with groundwater levels generally increasing in the Fall and Spring and decreasing in the Winter and Summer. As shown, the groundwater elevations in monitoring wells BH20-2, BH20-4, BH20-6-S (shallow), BH20-8-S (shallow) and BH20-8-D (deep) increased with a delayed response to some rain events during this period. A similar but muted groundwater elevation trend is observed at BH20-10-S (shallow).

3.4 Hydraulic Testing

Single-well response testing (i.e., rising head testing) was carried out in BH20-3, BH20-4, BH20-6-S (shallow), BH20-8-S (shallow) and BH20-10-S (shallow) on June 11, 2021, and in BH20-2 on July 23, 2021. The rising head tests were carried out by rapidly lowering the water levels by purging with a dedicated Waterra foot valve and tubing. The resulting water level recoveries were monitored with an electronic water level tape and automatic pressure transducers. The recovery data were analyzed using the AQTESOLV for Windows (1996 – 2007) Version 4.5 software. The Bouwer and Rice (1976) method for unconfined conditions was applied to the rising head test data. Estimates of hydraulic conductivity (K) obtained from the rising head tests are summarized below in Table 1. Summary printouts of the rising head test data and results from AQTESOLV are included in Appendix F.

Table 1: Summary of Estimated Hydraulic Conductivity

Monitoring Well ID	Screened Interval (masl)	Screened Unit	K (m/s)				
BH20-2	410.2 to 413.2	gravelly SILTY SAND (TILL)	2 x 10 ⁻⁸				
BH20-3	406.7 to 409.8	SILTY CLAY / sandy SILT / sandy SILT (TILL)	2 x 10 ⁻⁷				
BH20-4	413.3 to 414.8	413.3 to 414.8 gravelly SILTY SAND / SAND and GRAVEL					
BH20-6-S	404.0 to 407.0	SILT and SAND (TILL)	3 x 10 ⁻⁸				
BH20-8-S	403.2 to 406.2	sandy SILT / SILTY SAND / GRAVEL and SAND	3 x 10 ⁻⁷				
BH20-10-S	417.3 to 420.4	SAND	4 x 10 ⁻⁵				

Notes:

m/s - metres per second

The estimated hydraulic conductivity values are considered reasonable for the units tested.

3.5 Guelph Permeameter Testing

Soil infiltration rate testing was carried out on July 25, 2022, in the unsaturated zone, using a Guelph Permeameter (Soilmoisture Equipment Corp., Model 2800K1). The Guelph Permeameter was operated in accordance with the procedures outlined by the manufacturer (Soilmoisture Equipment Corp., 2012) using a single head method. The apparatus was installed at the base of hand-augered test holes.

Once the outflow of water at the depth of installation reached a steady-state flow rate, the field-saturated hydraulic conductivity, K_{fs} , of the soil was estimated using the following equation (Elrick et. al., 1989):

$$K_{fs} = \frac{C_1 Q_1}{2 \pi H_1^2 + \pi \alpha^2 C_1 + 2 \pi \frac{H_1}{\alpha^*}}$$

Where: C_1 = shape factor

 $Q_1 = \text{flow rate (cm}^3/\text{s)}$

H₁ = water column height (cm)

a = well radius (cm)

 α^* = alpha factor (0.12 cm⁻¹ for Type 3 soils)

The field data and analysis of the infiltration rate tests are presented as Figures F-1 to F-6, Appendix F. Based on the resulting K_{fs} in centimetres per second (cm/s), the corresponding infiltration rates (mm/hr) were estimated using the approximate relationship presented in the *Low Impact Development Stormwater Management Planning and Design Guide* (or "*Design Guide*") (TRCA and CVCA, 2010). A summary of the infiltration rate test results is presented in Table 2, below.

Table 2: Summary of Estimated Infiltration Rates

Test	Soil Description	Test Depth Relative to Grade (mbgs)	Est. Field- Saturated Hydraulic Conductivity K _{fs} (cm/s)	Estimated Infiltration Rate ¹ (mm/hr)
GP-20-2 (near BH20-2)	gravelly SILTY SAND (TILL)	0.61	2x10 ⁻⁴	58
GP-20-4 (near BH20-4)	sandy SILT	0.60	1x10 ⁻⁴	50
GP-20-6 (near BH20-6-D)	sandy SILT to SILTY SAND	0.65	2x10 ⁻⁵	36
GP-20-7 (near BH20-7)	sandy SILTY CLAY to CLAYEY SILT	0.63	5x10 ⁻⁵	44
GP-20-8 (near BH20-8-D)	sandy SILT	0.71	5x10 ⁻⁴	67
GP-20-10 (near BH20-10-S)	SAND	0.65	7x10 ⁻⁴	71

Notes:

mbgs - metres below ground surface. cm/s - centimetres per second. mm/hr - millimetres per hour

The infiltration rate estimates from this investigation are based on the test methods discussed above and are for the corresponding soil types encountered. They represent the soil conditions at the tested locations and depths only; conditions may vary between and beyond the tested locations.

For design purposes, a correction factor should be applied to estimate the design infiltration rate in accordance with guidance provided in TRCA and CVCA (2010), to account for potential reductions in soil permeability due to compaction, smearing during the construction of a given infiltration feature and the gradual accumulation of fine sediments over the lifespan of the infiltration feature. Care should be taken during construction of any proposed infiltration measures to preserve the existing soil structure and avoid compaction and re-working which could reduce its infiltrative properties.

3.6 Groundwater Quality

Groundwater samples were collected from monitoring wells BH20-3, BH20-8-S (shallow) and BH20-10-S (shallow) on March 12, 2021, and from monitoring wells BH20-4, BH20-8-S (shallow) and BH20-10-S (shallow) on July 5, 2022. The samples were collected using a peristaltic pump, low flow sampling techniques, and generally accepted environmental engineering protocols, and stored on ice in coolers until delivered, under chain-of-custody documentation, to AGAT Laboratories of Mississauga, Ontario for chemical analysis.

The samples were analyzed for inorganic and general chemistry parameters and selected metals, and compared to the MECP *Policies, Guidelines and Provincial Water Quality Objectives of the Ministry of Environment and Energy* (PWQO), *Table 2 – Table of PWQOs and Interim PWQOs* (July 1994, Reprinted February 1999). The

¹ – based on Table C1 from TRCA and CVCA (2010).

laboratory analytical reports are included in Appendix G. The following Table 3 summarizes the exceedances of the PWQO.

Groundwater sampled from a monitoring well can contain elevated levels of suspended sediment in the water (i.e., Total Suspended Solids [TSS]). The collected groundwater samples were not analyzed for TSS; however, the samples were analyzed for turbidity which has a positive correlation with TSS. The turbidity measurements for each groundwater sample are included below in Table 3. In general, the elevated concentrations of metals with exceedances are likely attributed to elevated levels of sediment in the groundwater samples and interference from the dissolution of suspended sediment during sample acidification. Therefore, should dewatering be required at the site, the amount of sediment in the water should be reduced prior to discharge in order to meet the PWQO (e.g., with the use of a sedimentation tank or sediment filter bag). However, the results indicate that the PWQO exceedance for iron in BH20-10-S on July 5, 2022, is primarily from the dissolved fraction, which may be present as a result of mineral deposits and may not be significantly lowered with the removal of sediment. It is noted that the sample collected from BH20-10-S on March 12, 2021, met the PWQO for iron.

Table 3: Summary of Groundwater Quality Exceedances and Turbidity

Parameter	Units	PWQO	BH20-3	BH20-4	BH20-8-S (shallow)	BH20-10-S (shallow)					
Groundwater Sample Collected on March 12, 2021 (BH20-3, BH20-8-S and BH20-10-S)											
Total Cobalt	mg/L	0.0009	0.0008	NA	0.0015	<0.0005					
Total Iron	mg/L	0.30	1.84	NA	3.30	0.049					
Turbidity	NTU	NA	39.4	NA	234	4.4					
Groundwater Sai	mple Co	ollected o	on July 5, 2022 (BH	20-4, BH20-8-S an	d BH20-10-S)						
Total Cobalt	mg/L	0.0009	NA	<0.0005	0.0020	<0.0005					
Total Iron	mg/L	0.30	NA	<0.010	4.27	0.410					
Total Copper	mg/L	0.005	NA	0.001	0.006	0.001					
Total Vanadium	mg/L	0.006	NA	<0.002	0.007	<0.002					
Total Zinc	mg/L	0.030	NA	<0.020	0.060	<0.020					
Turbidity	urbidity NTU NA NA		8.9	246	0.7						

Notes:

Bold font values exceed the PWQO.

NA = Not Applicable

4.0 DISCUSSION

The site is located in the south of Fergus, Ontario, consisting primarily of undeveloped land comprised of a mixture of treed areas, agricultural fields and residential homes. The Grand River is located approximately 800 m northwest of the site and Nichol Drain No. 2 is located in the central portion of the site. In general, the site drains east and west, depending on location, towards Nichol Drain No. 2, which includes three PSW areas adjacent to

the watercourse. Portions of the site adjacent to Nichol Drain No. 2 and the three PSW's are located within GRCA regulated areas.

The findings of this investigation indicate that shallow native soils are primarily comprised of non-cohesive deposits and/or glacial till deposits. Based on MECP water well records, the thickness of the overburden unit ranges from about 25 m thick near the southeast portion of the site to about 9 m thick in the northwest portion of the site. In general, the overburden unit thins out moving northwest towards the Grand River, where MECP water well records indicate that bedrock is encountered at ground surface. Shallow groundwater flow at the site is inferred to follow local topography, with flow in an eastern or western direction towards Nichol Drain No. 2, depending on location.

In 1996, R.J. Burnside & Associates Ltd. (Burnside) issued the Nichol Drain No. 2 Subwatershed Study. Burnside indicated that Nichol Drain No. 2 is an intermittent watercourse and that groundwater discharge is limited in the headwater reaches in the Secondary Plan area. Data from the SG1/P1, SG2/P2 and SG3/P3 pairs installed in Nichol Drain No. 2 identified an upward hydraulic gradient at all three SG/P pairs in March and November 2021, and generally a downward hydraulic gradient in the June and July 2021/22 monitoring events. The data from the SG/P pairs indicate that the watercourse was frozen in late January 2021. No surface water was present at staff gauge SG3 on the monitoring events in July 2021 and in June and July 2022, with groundwater levels at least 0.9 m below ground surface in piezometer P3 on those dates. Collectively, these data confirm the intermittent nature of Nichol Drain No. 2 with seasonal groundwater discharge during the monitoring period.

Based on MECP water well records, there are a total of 75 water supply wells located within 500 m of the site, which are primarily comprised of deep drilled bedrock wells. The site is located within the Wellhead Water Quantity Zone in an area designated by the GRCA as Significant Risk, with portions of the site located within areas designated as WHPA-B/C/D, or the 2-, 5- and 25-year travel time zones, respectively. A public use well (no. 6705606) is located approximately 400 m north of the site and is a deep drilled bedrock well with a reported well depth of 124.4 m. Also, a municipal well (no. 6715276) is located approximately 1.3 km northwest of the site and is a deep drilled bedrock well with a reported well depth of 79.5 m. Portions of the site are mapped by GRCA as SGRA, likely due to published geological mapping indicating the presence of sandy and gravelly glaciofluvial deposits on parts of the site. It is noted that the geological mapping is generally consistent with the conditions encountered during the site-specific subsurface investigation.

The proposed mixed-use development is understood to be comprised of low and medium density residential blocks, with mixed-use corridor and gateway commercial blocks located to the east and west of Tower Street South, a future school block, a business park, natural heritage areas, neighbourhood and community parks, six SWM ponds and internal roads. It is recommended that a site-wide water balance assessment and feature-based water balance assessments for Nichol Drain No. 2 and the PSW's be conducted to assess the potential hydrogeological impacts of the proposed development with respect to average annual post-development infiltration rates. Also, a detailed assessment of short-term (construction) and long-term dewatering needs and potential impacts to receptors should be carried out at the time of detailed design and in conjunction with obtaining dewatering permitting from the MECP.

5.0 CLOSURE

We trust that this submission meets your current requirements. If you have any questions regarding the contents of this report, please contact the undersigned.

Signature Page

Yours truly

WSP Canada Inc.Golder Associates Ltd.

Joel Gopaul, B.A.Sc.

Geo-Environmental Consultant

Joel Sopaul

John Piersol, P.Geo.

Associate, Senior Hydrogeologist

John Rand

JJG/MAS/JP/lb

 $https://golder associates.share point.com/sites/124833/project\ files/6\ deliverables/report/20141301-rev0-hydrogeological\ investigation\ report\ -\ south\ fergus\ 4apr 2023.docx$

Figures

APPROVED

MAS

20141301

0002

APPENDIX A

Important Information and Limitations of this Report

Standard of Care: WSP Canada Inc. (WSP) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to WSP by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. WSP cannot be responsible for use of this report, or portions thereof, unless WSP is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without WSP's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, WSP may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to WSP. The report, all plans, data, drawings and other documents as well as all electronic media prepared by WSP are considered its professional work product and shall remain the copyright property of WSP, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of WSP. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client cannot rely upon the electronic media versions of WSP's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to WSP by the Client, communications between WSP and the Client, and to any other reports prepared by WSP for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. WSP cannot be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, WSP does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that WSP interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: WSP will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of WSP's report. WSP should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of WSP's report.

During construction, WSP should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of WSP's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in WSP's report. Adequate field review, observation and testing during construction are necessary for WSP to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, WSP's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that WSP be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that WSP be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. WSP takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Provided Drawings

McQUEEN BLVD (swm) Mines 18 2 17 2 1 (SWM (swm) (swm) SWM (SWM 2ND LINE

Figure 1: Preliminary Land Use Plan

Preferred Land Use Plan

South Fergus Secondary Planning Area

LEGEND

South Fergus Planning Area

Property Lines (Approximate)

Natural Heritage Features

Creek

Natural Hazard Limit

Proposed Land Use

Low Density Residential

Medium Density Residential

Mixed Use Corridor

Gateway Commercial

Business Park

Community Park

Natural Heritage

Highway Commercial

Special Policy Area

Future School Location

Neighbourhood Park Locations

Preliminary SWM Locations

Trail Corridor

Proposed Collector Roads

Potential Roundabout

Property of Cultural Heritage Value or Interest

May 26, 2022

Project: 19144A

APPENDIX C

MECP Water Well Record Summary

LABEL		DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME		DRILLER	TYPE	WELL NAME
		mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min		METHOD	STAT	DESCRIPTION OF MATERIALS
6701761	1	Jun-56	550197	411.5	59.4 Fr		22.3	45	120	22.9	2521	WS	MOE# 6701761
	10		4838104								CT	DO	0.0 CLAY 12.2 CLAY STNS 18.6 GREY LMSN 59.4
6701762	1	Apr-59	550132	412.1	52.4 Fr		23.2	32	120	23.2	2521	WS	MOE# 6701762
	10		4838155								CT	DO	0.0 CLAY 16.2 GREY LMSN 27.4 YLLW LMSN 30.5
													GREY LMSN 42.7 YLLW LMSN 52.4
6701772		Apr-62	550746	414.8	39.6 Fr		16.8	32	120	18.3	1659	WS	MOE# 6701772
			4838448								CT	CO	0.0 CLAY MSND 4.6 CLAY STNS 14.6 GREY LMSN
													39.6
6701773		Jun-63	550732	415.1	38.1 Fr		19.8	45	120	21.3	1659	WS	MOE# 6701773
			4838469								СТ	DO	0.0 CLAY STNS 15.2 GREY LMSN 38.7
6701774		May-66	550689	415.4	21.3 Fr		21.9	55	15	25.9	2406	WS	MOE# 6701774
			4838615								CT	DO	0.0 TPSL 0.3 BRWN CLAY 10.7 GREY CLAY STNS
													17.1 GREY LMSN 27.4 BRWN LMSN 52.1
6701779	2	Aug-67	550458	408.1	27.4 Fr		11.9	36	180	18.3	1659	WS	MOE# 6701779
	10		4837783								CT	DO	0.0 CLAY STNS 9.1 GREY LMSN 29.3
6701780	2	Nov-48	550926	411.8	126.5 Fr		12.2	36	360	36.6	2411	WS	MOE# 6701780
	2		4837818								CT	ST	0.0 CLAY 9.1 GRVL 12.2 LMSN 128.9
6702844	1	Apr-56	552828	426.7	54.9 Fr		11.0	45	240	13.1	1648	WS	MOE# 6702844
	3		4838509								СТ	DO	0.0 CLAY STNS 22.9 GRVL 26.2 LMSN 54.9
6702845	1	Sep-64	552204	425.8	32.9 Fr		19.8	45	120	22.9	1659	WS	MOE# 6702845
	4		4839066								CT	DO	0.0 CLAY MSND 21.9 GREY LMSN 32.9
6703257	1	Sep-68	551902	422.1	45.7 Fr		18.3	45	120	25.9	2521	WS	MOE# 6703257
	4		4839021								СТ	DO	0.0 CLAY 24.7 GREY LMSN 45.7
6703946	1	May-71	550312	411.5	38.1 Fr		8.5	27	480	15.2	1659	WS	MOE# 6703946
	11		4838071								CT	DO	0.0 CLAY STNS 9.1 GREY LMSN 38.1
6704215	2	Feb-71	551262	414.5	9.1 Fr		3.7	9	60	11.0	3637	WS	MOE# 6704215
	12		4837821		3.0 Fr						BR	ST	0.0 BRWN TPSL 0.3 BRWN CLAY SAND GRVL 3.0
													GREY CLAY STNS SAND 11.3
6704926	1	Sep-73	551912	423.1	50.9 Fr		20.1	41	600	28.7	3316	WS	MOE# 6704926
	4		4838971		44.5 Fr						RC	DO	0.0 BRWN CLAY STNS 28.0 BRWN LMSN 45.7 WHTE
													LMSN 51.8
6704998	2	Feb-74	550750	410.0	38.1 Fr		10.1	45	60	13.7	2336	WS	MOE# 6704998
	10		4837516		30.5 Fr						CT	DO	0.0 BRWN CLAY STNS 4.6 BRWN CLAY GRVL 8.8
													BRWN ROCK 27.4 BRWN ROCK 30.5 BRWN ROCK 38.4
6705124	1	Jun-74	552520	423.7	40.2 Fr		17.7	45	60	21.3	2336	WS	MOE# 6705124
	3		4838454								RC	DO	0.0 TPSL 0.3 BRWN CLAY FSND 19.8 GREY CLAY
													STNS 22.3 BRWN ROCK 25.9 GREY ROCK 31.7 BRWN
													ROCK 40.2
6705273	1	Sep-74	552025	422.1	22.3 Fr		16.5	23	60	19.8	3740	WS	MOE# 6705273
	4		4838914								RA	DO	0.0 BRWN CLAY STNS 13.1 GREY HPAN BLDR 18.6
													BRWN LMSN LYRD 20.7 BRWN LMSN FCRD 22.3
6705444	2	Jan-75	551073	416.1	34.4 Fr		15.2	45	60	24.4	2521	WS	MOE# 6705444
	11		4837876								СТ	DO	0.0 CLAY 9.4 GREY LMSN 34.4

LABEL	CON	DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
6705535	2	May-75	550462	411.5	33.5 Fr		9.1	68	60	18.3	2336	WS	MOE# 6705535
	10		4837571								RC	DO	0.0 BRWN CLAY STNS 11.6 BRWN ROCK 33.5
6705562	1	May-75	551847	422.1	99.1 Fr		15.2				2336	TH	MOE# 6705562
	5		4839152		48.8 Fr						RC	MU	0.0 TPSL 0.6 BRWN CLAY STNS 3.7 GREY CLAY
					19.8 Fr								STNS 14.6 BRWN ROCK 47.2 BRWN ROCK 100.0
6705571	1	Nov-75	550366	411.5	21.3 Fr		14.6	18	60	16.8	3740	WS	MOE# 6705571
	11		4838067								RA	DO	0.0 BLCK TPSL 0.3 BRWN CLAY STNS 11.3 BRWN
													LMSN 21.3
6705606	1	Jul-75	551812	422.1	107.3 Fr		16.8		60		2336	WS	MOE# 6705606
	5		4839071		74.7 Fr						CT	PU	0.0 BRWN CLAY STNS 4.0 GREY CLAY STNS 15.2
					45.7 Fr								ROCK FCRD 20.1 BRWN ROCK 42.7 BRWN ROCK 67.1
					45.7 Fr								YLLW ROCK 74.7 BRWN ROCK 99.7 GREY ROCK
					45.7 Fr								108.2 GREY ROCK 124.4
6705674	2	Aug-75	550362	413.0	29.3 Fr		13.7	45	60		2336	WS	MOE# 6705674
	10		4837621								RC	DO	0.0 BRWN CLAY STNS 5.5 GREY CLAY STNS 12.2
													BRWN ROCK 28.3 CLAY ROCK FCRD 29.3
6705718	1	Sep-75	550332	410.0	43.3 Fr		15.2	27	60	22.9	2336	WS	MOE# 6705718
	11		4838021								RC	DO	0.0 BRWN CLAY SAND GRVL 6.1 BRWN CLAY STNS
													SAND 9.8 GREY ROCK 15.8 BRWN ROCK 43.3
6705720	1	Sep-75	550462	410.0	29.3 -		14.6	36	60	18.3	2336	WS	MOE# 6705720
	11		4837921		24.4 -						RC	DO	0.0 BRWN CLAY STNS 8.8 BRWN LMSN 14.9 29.3
6705740	1	Oct-75	550532	411.5	38.7 Fr		16.2	36	60	21.3	2336	WS	MOE# 6705740
	11		4838061								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS SAND 9.1
													BRWN ROCK 38.7
6705743	1	Oct-75	550512	411.5	38.7 Fr		16.8	36	60	22.9	2336	WS	MOE# 6705743
	11		4838091								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS SAND 9.1
													BRWN ROCK 38.7
6705744	1	Oct-75	550412	410.0	29.6 Fr		13.4	36	60		2336	WS	MOE# 6705744
	11		4837921								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
													CLAY STNS 9.1 BRWN ROCK 29.6
6705745	1	Oct-75	550462	410.0	29.6 Fr		13.4	36	60	22.9	2336	WS	MOE# 6705745
	11		4837991								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
													CLAY STNS 9.1 BRWN ROCK 29.6
6705746	1	Oct-75	550412	411.5	38.7 Fr		16.5	36	60	22.9	2336	WS	MOE# 6705746
	11		4838071								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 6.1 GREY
													CLAY STNS 11.6 BRWN ROCK 38.7
6705747	1	Oct-75	550462	411.5	38.7 Fr		16.5	36	60	22.9	2336	WS	MOE# 6705747
	11		4838121								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
													CLAY STNS 11.6 BRWN ROCK 38.7
6705748	1	Oct-75	550462	410.0	38.7 -		16.5	36	60	21.3	2336	WS	MOE# 6705748
	11		4838021								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.3 GREY
													CLAY STNS 11.9 BRWN ROCK 38.7

LABEL		DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL		TIME		DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min		METHOD	STAT	DESCRIPTION OF MATERIALS
6705750	1	Oct-75	550462	410.0	38.7 Fr		16.8	36	60	22.9	2336	WS	MOE# 6705750
	11		4838021								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY 7.6 GREY CLAY
													STNS 11.6 BRWN ROCK 38.7
6705751	1	Jun-75	550382	411.5	36.6 Fr		15.5	36	60	22.9	2336	WS	MOE# 6705751
	11		4838121								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
													CLAY STNS 12.8 BRWN ROCK 36.6
6705752	1	Oct-75	550362	411.5	41.8 Fr		18.6	36	60	24.4	2336	WS	MOE# 6705752
	11		4838121								RC	DO	0.0 TPSL 0.3 BRWN CLAY STNS 9.1 GREY CLAY
													STNS 12.8 BRWN ROCK 43.0
6705753	1	Jul-75	550412	411.5	36.6 Fr		15.2	36	60	22.6	2336	WS	MOE# 6705753
	11		4838151								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
													CLAY STNS 12.8 BRWN ROCK 36.6
6705754	1	Jun-75	550372	410.0	36.6 Fr		15.2	36	60	22.3	2336	WS	MOE# 6705754
	11		4837991								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 6.1 GREY
													CLAY STNS 10.4 BRWN ROCK 36.6
6705755	1	May-75	550402	410.0	37.8 Fr		14.3	36	60	21.3	2336	WS	MOE# 6705755
	11		4838021								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 6.1 GREY
													CLAY STNS 10.4 BRWN ROCK 37.8
6705756	1	Dec-75	550362	411.5	41.1 -		18.9	36	60	24.4	2336	WS	MOE# 6705756
	11		4838121								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
													CLAY STNS 12.8 BRWN ROCK 41.1
6705757	1	Nov-75	550412	413.0	38.1 Fr		20.1	36	60	24.4	2336	WS	MOE# 6705757
	11		4838141								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
													CLAY 12.8 BRWN ROCK 38.1
6705758	1	Nov-75	550362	413.0	42.7 Fr		19.8	36	60	24.1	2336	WS	MOE# 6705758
	11		4838101								RC	DO	0.0 TPSL 0.3 BRWN CLAY STNS 8.8 GREY CLAY
													STNS 12.5 BRWN ROCK 42.7
6705759	1	Nov-75	550312	411.5	37.5 -		17.1	36	60	24.4	2336	WS	MOE# 6705759
	11		4838081								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 10.1 BRWN
			.000001									20	ROCK 37.5
6705762	1	Nov-75	550332	413.0	47.9 Fr		25.9	36	60	29.9	2336	WS	MOE# 6705762
0703702	11	1101 75	4838271	415.0	47.5 11		25.5	30	00	23.3	RA	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
	11		4030271								IVA	ЪО	CLAY STNS 15.2 BRWN ROCK 47.9
6705763	1	Nov-75	550182	413.0	47.9 Fr		25.6	36	60	29.9	2336	WS	MOE# 6705763
0703703	11	1404-13	4838171	413.0	47.3 FI		۷۵.0	30	00	23.3	2330 RA	DO	0.0 BRWN TPSL 0.3 BRWN CLAY 7.6 GREY CLAY
	11		40301/1								11/71	ЪО	14.0 BRWN ROCK 47.9
6705765	1	Apr 75	550322	/111 F	42.7 Fr		21.3	45	60	25.9	2336	\ \ /\$	MOE# 6705765
0/03/03	1	Apr-75		411.5	42./ FI		21.3	45	60	25.9		WS	
	11		4838081								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 9.1 GREY
C70F7CC	1	Con 75	FF0.433	410.0	22.0 ==		14.0	4.5		10.0	2226	14/6	CLAY STNS GRVL 14.3 BRWN ROCK 43.3
6705766	1	Sep-75	550422	410.0	33.8 Fr		14.6	45	60	19.8	2336	WS	MOE# 6705766
	11		4837961								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
													CLAY STNS 10.7 BRWN ROCK 33.8

LABEL	CON LOT	DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl		TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
6705767		•				IIIDBI III							
6705767	1	Sep-75	550392	410.0	38.1 Fr		14.6	45	60	19.8	2336	WS	MOE# 6705767
	11		4837961								RC	ST	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
			550440		10.0.5		400						CLAY STNS 10.7 BRWN ROCK 38.1
6705768	1	Jun-75	550412	413.0	43.0 Fr		18.9	45	60	24.4	2336	WS	MOE# 6705768
	11		4838161								RC	DO	0.0 BRWN CLAY STNS 7.6 GREY CLAY STNS 14.0
													BRWN ROCK 43.0
6705770	1	Aug-75	550272	413.0	39.0 Fr		23.8	32	60	27.4	2336	WS	MOE# 6705770
	11		4838221								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS SAND 12.8
													BRWN ROCK 39.0
6705772	1	Oct-75	550462	408.4	29.3 Fr		13.7	45	60	18.3	2336	WS	MOE# 6705772
	11		4837921								RR	DO	0.0 BRWN CLAY STNS 7.9 BRWN ROCK 29.3
6705774	1	Oct-75	550552	410.0	38.4 Fr		16.8	68	60	22.9	2336	WS	MOE# 6705774
	11		4837991								RC	ST	0.0 BRWN CLAY STNS 8.5 BRWN ROCK 38.4
6705775	1	Oct-75	550582	410.0	38.4 Fr		16.8	68	60	21.3	2336	WS	MOE# 6705775
	11		4838021								RC	DO	0.0 BRWN CLAY STNS 8.5 BRWN ROCK 38.4
6705815	1	Oct-75	550232	413.0	32.6 Fr		18.3	23	150	24.4	3740	WS	MOE# 6705815
	11		4838121								RA	DO	0.0 BLCK TPSL 0.3 BRWN CLAY STNS 11.3 BRWN
													LMSN CLAY LYRD 32.6
6705855	1	Dec-75	550322	413.0	45.1 Fr		24.4	36	60	32.0	2336	WS	MOE# 6705855
	11		4838261								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY STNS 7.6 GREY
													CLAY STNS 13.4 BRWN ROCK 45.1
6705859	1	Dec-75	550362	413.0	44.5 Fr		22.9	36	60	30.5	2336	WS	MOE# 6705859
	11		4838221								RA	DO	0.0 TPSL 0.3 BRWN CLAY STNS 7.6 GREY CLAY
													STNS 14.0 BRWN ROCK 44.5
6705887	1	Jan-76	550362	410.0	48.2 Fr		15.2	36	60	21.3	2336	WS	MOE# 6705887
	11		4838041								CT	DO	0.0 BRWN CLAY STNS GRVL 9.1 BRWN ROCK 48.2
6705888	1	Jan-76	550302	411.5	45.1 Fr		21.3	36	60	27.4	2336	WS	MOE# 6705888
	11		4838081								CT	DO	0.0 BRWN CLAY STNS 10.1 BRWN ROCK 45.1
6705889	1	Jan-76	550362	410.0	38.4 Fr		22.9	36	60	30.5	2336	WS	MOE# 6705889
	11		4838021								CT	DO	0.0 BRWN CLAY STNS GRVL 11.0 BRWN ROCK 38.4
6705893	2	Dec-75	550512	408.4	23.8 Fr		10.1	27	60	11.3	3740	WS	MOE# 6705893
	10		4837721								RA	DO	0.0 BRWN CLAY 4.6 GREY HPAN BLDR 10.4 GREY
													LMSN 14.6 BRWN LMSN 23.8
6705950	1	Mar-76	550312	411 5	36.0 Fr		16.2	36	60	19.8	2336	WS	MOE# 6705950
0,03330	11	11101 70	4838071	111.5	30.0 11		10.2	30	00	13.0	CT	DO	0.0 TPSL 0.3 BRWN CLAY STNS GRVL 9.1 BRWN
			1030071								C .	20	ROCK 36.0
6705951	1	Jun-76	550362	413.0	44.8 Fr		22.9	36	60	29.0	2336	WS	MOE# 6705951
0,03331	11	Juli 70	4838231	413.0	→ T. U 11		22.3	30	00	23.0	CT	DO	0.0 BRWN CLAY STNS GRVL 12.8 BRWN ROCK 44.8
6705952	1	Jul-76	550312	411.5	36.0 Fr		20.4	36	60	24.4	2336	WS	MOE# 6705952
0703332	11	Jui-70	4838071	+11.J	30.0 11		20.4	30	00	24.4	2330 CT	DO	0.0 BRWN CLAY STNS GRVL 9.1 BRWN ROCK 36.0
6705973	1	Mar-76	550372	413.0	44.2 Fr		18.3	45	60	21.3	2336	WS	MOE# 6705973
0/039/3		iviai-70		415.0	44.Z FI		10.3	45	60	21.3			
	11		4838181								СТ	DO	0.0 BRWN CLAY SAND STNS 10.4 BRWN ROCK 25.9
													BRWN CLAY ROCK 29.0 BRWN ROCK 45.1

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m		RATE L/min	TIME min		DRILLER METHOD	TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
6706231	2	Dec-76	551362	410.0	38.1 Fr		7.3	82	120	15.2	2564	WS	MOE# 6706231
	12		4837721								CT	ST	0.0 GRVL CLAY 11.6 GREY LMSN 39.3
6707483	1	Feb-81	551812	420.6	57.9 Fr		22.6	73	120	24.7	2336	WS	MOE# 6707483
	5		4839271		44.2 Fr						RC	ST	0.0 TPSL 0.3 BRWN CLAY STNS 6.1 GREY CLAY
													STNS 20.7 GREY CLAY GRVL 22.6 GREY STNS 26.8
													BRWN STNS MGRD 44.2 BRWN STNS LTCL 58.8
6708671	2	Nov-86	550465	409.7			9.1	45	120	19.8	2564	WS	MOE# 6708671
	11		4837888								CT	DO	0.0 CLAY 6.1 GRVL 13.7 LMSN 31.1
6708681	3	Jul-86	552537	425.8	53.6 Fr		21.9	23	210	23.2	1669	WS	MOE# 6708681
	14		4838269								CT	DO	0.0 BLCK TPSL 0.6 BRWN CLAY 3.0 BRWN SAND
													12.2 BRWN GRVL 18.3 GREY HPAN 25.6 BRWN LMSN
													53.6
6708948	1	Jul-87	550293	410.0	36.6 Fr		20.7	27	120	70.1	2644	WS	MOE# 6708948
	10		4838029								RA	DO	0.0 TPSL CLAY 6.7 CLAY STNS 12.2 LMSN 78.6
6708999	1	Nov-87	550251	410.0	62.5 Fr		18.3	23	60	23.8	3740	WS	MOE# 6708999
	10		4838029								RC	DO	0.0 BRWN CLAY 5.5 GREY HPAN STNS 12.2 GREY
													LMSN 62.5
6709659	1	Jul-88	552783	431.9	19.5 Fr		7.3	50	120	13.1	3518	WS	MOE# 6709659
	2		4838145								RA	DO	0.0 BRWN TPSL 0.6 BRWN CLAY SAND SOFT 4.9
													BRWN SAND STNS CLAY 18.3 BRWN GRVL 19.5
6710692	1	Jul-91	550410	414.8	61.9 Fr		30.2	91	60		2663	WS	MOE# 6710692
	14		4838270		50.6 Fr						RA	DO	0.0 BRWN TPSL FILL 0.3 BRWN CLAY FGVL 10.7
													GREY CLAY FGVL 18.3 BRWN ROCK 61.9
6711184	1	May-93	550586	408.7	34.1 Fr		13.7	45	1440	15.2	3317	WS	MOE# 6711184
	11		4837883								RC	DO	0.0 BRWN CLAY STNS SAND 9.4 BRWN LMSN CLAY
													18.3 BRWN LMSN 39.6
6712275	2	Jun-97	550476	410.6	35.4 Fr		13.7	114	60	19.8	2336	WS	MOE# 6712275
	4		4837661								RA	DO	0.0 BRWN CLAY STNS 4.6 GREY CLAY STNS 11.3
													BRWN ROCK 24.4 BRWN ROCK 35.4
6712498	2	Mar-98	550958	406.3	128.0 Fr		4.9				2336	WS	MOE# 6712498
	11		4837453		112.8 Fr						RA	MU	0.0 BRWN PRDG FILL 0.3 BLCK TPSL 0.6 BRWN
					94.5 Fr								CLAY SAND 1.5 BRWN CLAY STNS 2.7 GREY CLAY
					94.5 Fr								GRVL 7.3 GREY GRVL CLAY 8.5 GREY CLAY SAND
					94.5 Fr								GRVL 9.8 GREY LMSN FCRD CLAY 14.9 BRWN LMSN
					94.5 Fr								FCRD CLAY 43.9 GREY LMSN FCRD CLAY 71.6 GREY
					94.5 Fr								LMSN DKCL 78.6 GREY LMSN LTCL 112.5 GREY
					94.5 Fr								SNDS LTCL 114.0 GREY LMSN LTCL 118.0 GREY
					94.5 Fr								LMSN SNDS 128.0
6713976	2	Nov-01	551874	416.7	51.8 -		14.3	32	60	33.5	6865	WS	MOE# 6713976
	12		4837835								RC	DO	0.0 BRWN CLAY 1.2 BRWN CLAY GRVL 4.6 GREY
													CLAY STNS 18.3 GREY LMSN 19.5 BRWN LMSN 37.2
													LMSN 51.8
6714798	2	Oct-03	551029	409.7			NR				6865	AQ	MOE# 6714798
	10		4836864								-	NU	0.0

D CLAY
-
-
-
-
-
-
.1
.1
.1
SAND CLAY
39.6
1 GREY
LMSN 29.0
RD 57.9
T CLAY
T CLAY
T CLAY
L'

LABEL CON	DATE	EASTING	ELEV	WTR FND	SCR TOP LEN	SWL	RATE	TIME	PL DRILLER	TYPE	WELL NAME
LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl METHOD	STAT	DESCRIPTION OF MATERIALS

(QUALITY:		TYPE:		USE:			ME	THOD:
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	CT	Cable Tool
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air
	Unrecorded	TH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy.

Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

April 4, 2023 20141301

APPENDIX D

Record of Borehole Sheets & Grain Size Distribution Curves

DEPTH SCALE

1:50

LOCATION: N 4837829.60; E 550594.30

RECORD OF BOREHOLE: 20-1

BORING DATE: December 14, 15 and 18, 2020

SHEET 1 OF 2

LOGGED: AGB

CHECKED: MJB

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH -OW Wp I (m) GROUND SURFACE 408.91 TOPSOIL SS 10 0 408.22 0.69 FILL - (ML) sandy SILT, some gravel; brown, oxidation staining; non-cohesive, moist to wet, loose to compact 2 SS 9 0 - Auger grinding from depths of 1.5 m to 3 SS 20 0 406.78 2.13 (ML) sandy SILT, trace plastic fines; some gravel; brown to grey (TILL), non-cohesive, moist, very dense 95/ 0.28 SS 5 SS 95 0 S:\CLIENTS\CC_TATHAM\SOUTH_FERGUS_LINE2\02_DATA\GINT\SOUTH_FERGUS_LINE2.GPJ_GAL-M\S.GDT_6/14/21 Mounted CME ss 100/ 0.18 6 0 Track - Auger grinding from depths of 5.2 m to - Becoming grey at a depth of 5.5 m - Auger grinding from depths of 5.6 m to 7 SS 50/ 0.13 0 - Auger grinding from depths of 6.3 m to 402.13 6.78 (SP) SAND and GRAVEL, brown; non-cohesive, wet, very dense - Auger grinding from depths of 7.0 m to 7.3 m ss 50/ 0.03 0 - Auger grinding from depths of 7.6 m to 9 9 SS 75 0 Auger grinding from depths of 9.5 m to 10 SS 399.00 9,91 CONTINUED NEXT PAGE 00

GOLDER

MEMBER OF WSP

LOCATION: N 4837829.60; E 550594.30

RECORD OF BOREHOLE: 20-1

BORING DATE: December 14, 15 and 18, 2020

SHEET 2 OF 2

DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m STANDPIPE INSTALLATION NUMBER TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp 🛏 - wi (m) --- CONTINUED FROM PREVIOUS PAGE ---10 END OF BOREHOLE 1. Rock fragments recovered from casing upon completion of drilling. 11 12 13 14 GTA-BHS 001 S:\CLIENTS\CC_TATHAM\SOUTH_FERGUS_LINE2\0202_DATA\GINT\SOUTH_FERGUS_LINE2.GPJ_GAL-MIS.GDT_6/1/21 15 17 18 19 20 DEPTH SCALE LOGGED: AGB

GOLDER MEMBER OF WSP

LOCATION: N 4837914.60; E 551074.40

RECORD OF BOREHOLE: 20-2

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: December 17, 2020

, l	ф Р	SOIL PROFILE			SA	MPLE	S	NAMIC PENETRATION SISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	⊡_[∐	DIEZOMETED
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 EAR STRENGTH nat V. + Q - • kPa rem V. ⊕ U - (10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_	ш	GROUND SURFACE	S				<u>m</u>	20 40 60 80	10 20 30 40	+	
0		TOPSOIL	EEE	418.26 0.00							
				417.75	1	ss	5				50 mm Stick-up Casing
		(SM) gravelly SILTY SAND, brown (TILL); non-cohesive, moist, dense to very dense		0.51							
1					2	SS	40		Φ		
			444		_		20				
2		- Auger grinding at depth of 1.7 m	4 4 4		3	SS	39				
			4 4 8 W		4	ss	94				<u>∑</u> 11-Jun-21
			140								Bentonite
3					\vdash		oe,				
			1000		5	SS (95/ 0.28				
4	E 75 ugers	- Auger grinding from depths of 4.0 m to 5.3 m	A								
	Track Mounted CME 75 0 mm Solid Stem Augers		4 2 3 4 2 3 4		6	ss _c	50/ 0.08		0		
5	Track I 150 mm 3	- Auger grinding from depths of 4.9 m to 5.3 m	2 4 2 3 4 2 3 4								ت
6		- Auger grinding from depths of 6.1 m to 6.7 m	4 3 4 4 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5		7	ss	50/ 0.05		0		Sand
		S. III	4 2 3 4 2 3 4 2								
7		- Auger grinding from depths of 7.2 m to 7.6 m	2 4 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								Screen and Sand
8			4 2 4 4 4 4		8	SS	50/ 0.1			МН	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		(CL) SILTY CLAY, trace sand, grey; cohesive, w <pl, hard<="" td=""><td></td><td>409.88 8.38</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		409.88 8.38							
9				409.04	9	ss ,	50/		0		
		END OF BOREHOLE NOTE:		9.22							
10		Ground water level measured in monitoring well as follows:									
.0	_	CONTINUED NEXT PAGE									

LOCATION: N 4837914.60; E 551074.40

RECORD OF BOREHOLE: 20-2

BORING DATE: December 17, 2020

SHEET 2 OF 2

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

DATUM: Geodetic

DEPTH SCALE METRES	Ĭ								DYNA RESIS						k, cm/s			- 1	1 J O	DIEZOMETED
	NG ME	ח	ESCRIPTION		STRATA PLOT	ELEV.	NUMBER	BLOWS/0.3m		20 4 R STREN	IO L IGTH	60 a	80 - Q- ●	10	r ⁶ 1	0 ⁻⁵ 10 L ONTENT		0 ³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
고	BORING METHOD		_oom non		TRAT.	DEPTH (m)	NUN	3LOW	Cu, kP	a		rem V. €	0 - O	Wp	<u> </u>			WI	ADI LAB.	INSTALLATION
\dashv	_	CONTINUED	FROM PREVIO	OUS PAGF	S		\vdash	+"	1 2	20 4	10	60	80	10) 2	0 3	0 4	10		
· 10 =		Date 19-Jan-21 29-Jan-21 12-Mar-21 11-Jun-21	Depth(m) 2.52 2.48 1.30 2.39	Elev. (m) 415.74 415.79 416.97 415.87																
12																				
13																				
14																				
15																				
16																				
- 17																				
18																				
19																				
20												ER								DGGED: AGB

LOCATION: N 4838399.70; E 551274.30

RECORD OF BOREHOLE: 20-3

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: January 6, 2021

щ	ОО	SOIL PROFILE			SA	MPLE	s	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	- ا	B.==0/:
DEPTH SCALE METRES	BORING METHOD		LOT		2		.3m	20 40 60 80	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
A L	NGN	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V. + Q - ●	WATER CONTENT PERCENT	EEE	STANDPIPE INSTALLATION
1	ORII		Ţ.	DEPTH (m)	NUN	F	Š	Cu, kPa rem V. ⊕ Û - Ŏ	Wp I WI	PB	
	m		ST	(111)		l l	m I	20 40 60 80	10 20 30 40		
0		GROUND SURFACE		413.40						1	
		TOPSOIL		0.00 413.20							50 mm Stick-up
		FILL - (SM) SILTY SAND, some gravel, trace plastic fines; brown; organic	\otimes	0.20	1	SS	13				Casing
		inclusions; non-cohesive, moist to wet, compact to loose	\otimes								
		compact to loose	\bowtie	3		.					
1			\bowtie	1	2	ss	9				
			\otimes	1							
		(41)	XX	412.03 1.37							
		(ML) sandy SILT, some gravel; trace plastic fines; brown; non-cohesive,		1.37		-					
		moist, compact to dense - Oxidation stain from 1.5 m to 2.0 m]	3	ss	13				
2		- Auger grinding from depths of 1.8 m to				.					<u>∑</u> 11-Jun-21
_		2.1 m]							Bentonite
				;							
]	4	ss :	36				
				:							
3				;							
J]		1					
				;	5	SS :	36				
	75 iers]							
	Track Mounted CME 75 150 mm Solid Stem Augers			409.59							
4	Sten	(CL) SILTY CLAY, some sand, grey; cohesive, w <pl, hard<="" td=""><td></td><td>3.81</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		3.81							
	Mour	concern, with L, mard									
	n ack										
	150				6	SS	76				Sand
					0	33	10				
5											
0											
											[4
		(ML) sandy SILT, trace plastic fines;		407.84 5.56							
		grey; non-cohesive, moist, dense		3.50							
6				1							
				i		1					Screen and Sand
]	7	SS :	39				
				<u> </u>		-					
				406.53							
7		(ML) sandy SILT, some gravel; grey		6.87							
		(TILL); non-cohesive, wet, very dense]							
				;							
											<u> </u>
			4.	1	8	ss s	92/				
8			4.1	405.37	Ĺ	- 0	J.25				
		END OF BOREHOLE		8.03							
		NOTE:									
		Ground water level measured in									
		monitoring well as follows:									
9		Date Depth(m) Elev. (m) 19-Jan-21 1.12 412.28									
		29-Jan-21 1.49 411.92									
		12-Mar-21 0.69 412.71 11-Jun-21 1.92 411.48									
		1									
10											
		1		1					1 1 1 1		
DE	PTH S	SCALE					1	GOLDER MEMBER OF WSP		L	OGGED: AGB
1:	50						•	MEMBER OF WSP		СН	ECKED: MJB

LOCATION: N 4838662.50; E 551803.90

RECORD OF BOREHOLE: 20-4

SHEET 1 OF 1 DATUM: Geodetic

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

BORING DATE: January 6, 2021

HAMMER TYPE: AUTOMATIC

, L	HOD,	SOIL PROFILE	-		SA	MPLE		DYNAMIC PENETR RESISTANCE, BLO	ATION WS/0.3m	λ.		k, cm/s	ONDUCTIVI	ry, T	AP NG	PIEZOMETER
METRES	BORING METHOD	DEGOE: PERSON	STRATA PLOT	ELEV.	3ER	الق	BLOWS/0.3m	20 40 SHEAR STRENGTH		30 `			0 ⁻⁵ 10 ⁻⁴ L L ONTENT PE	10 ⁻³ L	ADDITIONAL LAB. TESTING	OR STANDPIPE
M	ORIN	DESCRIPTION	RATA	DEPTH (m)	NUMBER	TYPE	LOWS	SHEAR STRENGTH Cu, kPa	rem V. \oplus	ŭ- Ö			ONTENT FE		ABB	INSTALLATION
	ш	GROUND SURFACE	S				В	20 40	60 8	30		10 2	20 30	40		
0		TOPSOIL	EEE	419.93 0.00												
		(ML) sandy SILT, some gravel; trace plastic fines; brown; non-cohesive, moist, compact		419.63 0.30	1	SS	12					0				50 mm Stick-up Casing
1					2	SS	10					0				
2					3	SS	25					0				<u>∑</u> 11-Jun-21
3		(SM) gravelly SILTY SAND, brown; non-cohesive, wet, compact to dense		417.03 2.90	4	SS	15					0				Bentonite
4	Track Mounted CME 75 mm O.D. Hollow Stern Augers				5	SS	27				0					
5	Track I	- Auger grinding from depths of 4.6 m to 5.2 m			6	SS	32					0			мн	
6					7	SS	32						0			Sand
7		(SP) SAND and GRAVEL, brown; non-cohesive, moist, loose			-											Screen and Sand
8		END OF BOREHOLE		411.85 8.08	8	ss	6					0				
		NOTE: 1. Ground water level measured in monitoring well as follows:														
9		Date Depth(m) Elev. (m) 19-Jan-21 1.17 418.76 29-Jan-21 1.51 418.42 12-Mar-21 0.68 419.25 11-Jun-21 1.80 418.13														
	PTH S	CALE						GOL MEMBER	DER							OGGED: AGB

RECORD OF BOREHOLE: 20-5

SHEET 1 OF 1 DATUM: Geodetic

LOCATION: N 4837552.60; E 551107.40

BORING DATE: December 16, 2020

ب	0	SOIL PROFILE			SA	MPLES	DYN	AMIC PENETRA STANCE, BLOV	ATION VS/0.3m)	HYDRAULIC k, cm	CONDUCTIVI'	TY, T	-	
RES	MET		LOT		2	ä		20 40	60	80	10 ⁻⁶	10 ⁻⁵ 10 ⁻⁴	10 ⁻³	- STONE	PIEZOMETER OR
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	SHE Cu,	AR STRENGTH Pa	nat V. + rem V. €	Q - •		CONTENT PE		ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
3	BOR		TRA	(m)	N	- c	i ou,						I WI	₹≤	
		GROUND SURFACE	0)	407.00				20 40	60	80	10	20 30	40		
0		TOPSOIL	EEE	407.29 0.00											
					1	SS 5						0			50 mm Stick-up
		Ell L (SM) SILTY SAND grovs	### ###	406.83 0.46											Casing
		FILL - (SM) SILTY SAND, grey; non-cohesive, moist, loose	_	406.60 0.69											
		FILL - (CL) sandy SILTY CLAY, some gravel; brown; rootlets; cohesive, w~PL,	\bowtie	0.09											
1		stiff	\otimes		2	SS 1]				0				∇
			\otimes	405.92											11-Jun-21
		(SM) gravelly SILTY SAND, grey (TILL); non-cohesive, moist, very dense		1.37											
		Hon-conesive, moist, very dense			3	SS 1									
]	Ĭ	00 1	<u> </u>								
2			41												Bentonite
]											
			4	1	4	SS 7	2								
				<u> </u>											
3															
١		- Auger grinding from depths of 3.1 m to		1			,								
	75	3.8 m		<u> </u>	5	SS 0.0	08				0				
	Track Mounted CME 75 100 mm O.D. Tricone]	\vdash										
	D. Tr		4]											
4	Mour			i											
	Track 100 n]											
				:											Sand
				:	6	ss 50)/				b			мн	
			3	1		0.0	,,,								[8
5]											[[8
			M	;											[3
			M]											
				;											
6				1			,								Screen and Sand
]	7	ss 50	15								Ocidentalia dalla
]											
				;											[[
7				:											[3
				1											
			3 2]			,								
		END OF BOREHOLE		399.64 7.65	-8	SS 0.0	3								15
		NOTE:													
8		Ground water level measured in													
		nonitoring well as follows:													
		Date Depth(m) Elev. (m)													
		19-Jan-21 0.65 406.65 29-Jan-21 0.75 406.55													
9		12-Mar-21 0.60 406.69													
		11-Jun-21 1.17 406.12													
10															
רבי	DTLI	SCALE						601	DED					,	OCCED: 402
υEl	L IH S	SCALE						GOL	レEK					L	OGGED: AGB

1:50

LOCATION: N 4837920.60; E 551468.90

RECORD OF BOREHOLE: 20-6

BORING DATE: January 8, 2021

SHEET 1 OF 2 DATUM: Geodetic

HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m $\begin{array}{c} \text{HYDRAULIC CONDUCTIVITY,} \\ \text{k, cm/s} \end{array}$ SAMPLES SOIL PROFILE BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT 10⁻⁵ 10⁻⁴ 10⁻³ BLOWS/0.3m NUMBER STANDPIPE INSTALLATION TYPE ELEV. SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT DESCRIPTION DEPTH OW. Wp -(m) 20-6-S 20-6-D GROUND SURFACE 410.46 TOPSOIL SS 8 0 410.00 FILL - (ML) sandy SILT, some gravel; brown, oxidation staining; organic \inclusions, non-cohesive, moist, loose 0.46 409.77 (SM) SILTY SAND, some gravel; brown; 2 SS 23 non-cohesive, moist, compact (SP) SAND, non-cohesive, wet, compact SS 21 0 (ML) SILT and SAND, some gravel; grey (TILL); non-cohesive, moist, very dense SS 70 5 SS 95 S:CLIENTSICC_TATHAM/SOUTH_FERGUS_LINE2/02_DATA/GINT/SOUTH_FERGUS_LINE2.GPJ_GAL-MIS.GDT_6/14/21 Track Mounted CME 75 6 ss 50/ 0.08 0 7 SS 50/ 0.1 50/ 0.03 SS - Auger grinding from depths of 7.6 m to SS 100/ 0.25 9 MH Bentonite 1,201,201,201,201 Sand 9 - Auger grinding from depths of 9.0 m to 10 SS 50/ 0.13 - Auger grinding from depths of 9.5 m to 9.8 m CONTINUED NEXT PAGE GTA-BHS 001 DEPTH SCALE LOGGED: AGB

GOLDER MEMBER OF WSP

LOCATION: N 4837920.60; E 551468.90

RECORD OF BOREHOLE: 20-6

SHEET 2 OF 2 DATUM: Geodetic BORING DATE: January 8, 2021

ш	9	SOIL PROFILE			SAM	1PLE	s	DYNAMIC PENETRATION \ RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	. (1)	
DEPIH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	æ.	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ 20 40 60 80	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		CONTINUED FROM PREVIOUS PAGE						20 40 00 80	10 20 30 40		20-6-S 20-6
ľ	Track Mounted CME 75 125 mm O.D. Tricone	(ML) SILT and SAND, some gravel; gra (TILL); non-cohesive, moist, very dense	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		-11 :	ss 0	50/		0		Screen and Sand
12		END OF PODELIG	12 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	397.81 12.65	12	ss o	50/		0		
		END OF BOREHOLE NOTES:		12.05							
13		Ground water level measured in shallow monitoring well (20-6-S) as follows:									
. 14		Date Depth(m) Elev. (r 19-Jan-21 1.11 409.37 29-Jan-21 1.06 409.42 12-Mar-21 0.71 409.76 11-Jun-21 1.27 409.21	;								
		Ground water level measured in deel monitoring well (20-6-D) as follows:	р								
15		Date Depth(m) Elev. (r 19-Jan-21 3.24 407.22 29-Jan-21 3.33 407.14 12-Mar-21 3.34 407.15 11-Jun-21 3.75 406.71	;								
16											
17											
18											
19											
20											

LOCATION: N 4838420.40; E 551815.90

RECORD OF BOREHOLE: 20-7

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: January 8, 2021

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

ا <u>ل</u>	Ĩ				_	1PLE:	' ו	RESISTANCE, BLOWS	5/U.3M		k, cm/s	-	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		照		7.3m		60 80	`	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 1	ADDITIONAL	OR STANDPIPE
MET	ING	DESCRIPTION	TAF	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	nat V. + Q - rem V. ⊕ U -	\bullet	WATER CONTENT PERCE	vr] [5	installation
3	BOR		3TRA	(m)	N		BLO 				Wp I		5
		GROUND SURFACE	0)	417.65	\vdash	+	+	20 40	60 80	\dashv	10 20 30 4	.0	
0		TOPSOIL	EEE	0.00	\Box	\top	+			\dashv			
		FILL - (ML) sandy SILT, some gravel; brown to black; organic inclusions;		417.35 0.30	1 8	ss	7				0		50 mm Stick-up Casing $\underline{\underline{\nabla}}$ 11-Jun-21
		non-cohesive, moist, loose (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; brown; cohesive,		416.96 0.69									11-Jui-21
1		w>PL to w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td></td><td>2 :</td><td>SS /</td><td>17</td><td></td><td></td><td></td><td>0</td><td></td><td></td></pl,>			2 :	SS /	17				0		
					3 :	ss .	17						
2							"						
	_S				4 :	ss 2	27				0		
3	Solid Stem Augers				H								Bentonite
3	S pilo S mm				5	ss 4	41				φ		
	:ME 75												
4	Track Mounted CME 75	(CL) sandy SILTY CLAY, brown;		413.61 4.04									
	Track	cohesive, w <pl, hard<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>											
5					6	SS S	57				0		
		(SP) SAND, brown; non-cohesive, wet,		412.32 5.33									
		compact to dense											Sand A
6	-				\square								Sand
					7 :	ss	16				0	М	#
٦	130 mm O.D. Washbore												Screen and Sand
7	M O.D. V												
	130 m												
8				409.57	8	ss s	33				0		
	-	EN OF BOREHOLE NOTE:	ļ <u>.</u>	8.08									
		Ground water level measured in monitoring well as follows:											
9		Date Depth(m) Elev. (m) 19-Jan-21 0.22 417.43											
		29-Jan-21 0.42 417.23 12-Mar-21 -0.12 417.77 11-Jun-21 0.48 417.17											
10													
	оты (SCALE					4	GOLD MEMBER OF	FD				LOGGED: AGB

LOCATION: N 4837269.10; E 551432.50

RECORD OF BOREHOLE: 20-8

SHEET 1 OF 2 DATUM: Geodetic BORING DATE: December 21, 2020

GROUND SURFACE TOPSOIL (ML) sandy SILT, some gravel; brown, oxidation staining; non-cohesive, moist, compact	STRATA PLOT	ELEV. DEPTH (m) 407.38 0.00 406.66	Z 3 1	SS	mE/O/S/0/3m	SHEAR STRENGTH nat V. + rem V. ⊕	80 - Q - ● 9 U - ○		10 ⁴ 10 ³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION 20-8-S 20-
TOPSOIL (ML) sandy SiLT, some gravel; brown, oxidation staining; non-cohesive, moist, compact		0.00 406.69	2	SS							20-8-S 20
(ML) sandy SILT, some gravel; brown, oxidation staining; non-cohesive, moist, compact		0.00 406.69	2	SS				O	0		
compact		0.68	2	_	10			o			
			3	SS							$\overline{\triangle}$
			<u> </u>		19			0			
			4	ss	16			φ			*
(SM) SILTY SAND, brown; non-cohesive, wet, loose to compact		404.10 3.28	5	ss	9						
(GP) GRAVEL and SAND grev		402.96 4.42	6	SS	22				0		
				ss	41			0			
- Auger grinding from depths of 5.0 m to 5.2 m			8A 8B	SS	100/ 0.25			0			লেনল
(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 6.1="" 6.4="" 6.6="" 7.0="" auger="" depths="" from="" grinding="" hard="" m="" m<="" of="" td="" to=""><td></td><td>401.46 5.92</td><td>2</td><td>ss</td><td>50/ 0.08</td><td></td><td></td><td>0</td><td></td><td></td><td>Bentonite</td></pl,>		401.46 5.92	2	ss	50/ 0.08			0			Bentonite
			10	ss	50/ 0.1						Sand Sand
											Screen and Sand
END OF BOREHOLE NOTES:											
SPT attempted at 9.1 m termninated due to split spoon refusal. CONTINUED NEXT PAGE The specific page 1.5 miles and the specific page 2.5 miles are specific page 2.5 miles and the specific page 2.5 miles are specific pag			<u> </u>		· _						
	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 6.1="" 6.4="" 6.6="" 7.0="" auger="" depths="" from="" grinding="" hard="" m="" m<="" of="" td="" to=""><td>- Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w-PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>- Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" depths="" due="" end="" from="" grinding="" hard="" m="" notes:="" of="" refusal.<="" split="" spoon="" spt="" td="" termninated="" to=""><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wPL, hard - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal. CONTINUED NEXT PAGE 7 SS 4.442 4.42 7 SS 4.42 4.42 7 SS 401.46 5.92 9 SS 88 88 88 88 88 88 88 88 88</td><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, WePL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 4.442="" 6.1="" 6.4="" 6.6="" 7.0="" 7<="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page="" refusal.="" split="" spoon="" spt="" td="" terminated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.</td><td>(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of</td></pl,></td></pl,></td></pl,></td></pl,></td></pl,>	- Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w-PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>- Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" depths="" due="" end="" from="" grinding="" hard="" m="" notes:="" of="" refusal.<="" split="" spoon="" spt="" td="" termninated="" to=""><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wPL, hard - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal. CONTINUED NEXT PAGE 7 SS 4.442 4.42 7 SS 4.42 4.42 7 SS 401.46 5.92 9 SS 88 88 88 88 88 88 88 88 88</td><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, WePL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 4.442="" 6.1="" 6.4="" 6.6="" 7.0="" 7<="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page="" refusal.="" split="" spoon="" spt="" td="" terminated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.</td><td>(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of</td></pl,></td></pl,></td></pl,></td></pl,>	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w-PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.	- Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" depths="" due="" end="" from="" grinding="" hard="" m="" notes:="" of="" refusal.<="" split="" spoon="" spt="" td="" termninated="" to=""><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wPL, hard - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal. CONTINUED NEXT PAGE 7 SS 4.442 4.42 7 SS 4.42 4.42 7 SS 401.46 5.92 9 SS 88 88 88 88 88 88 88 88 88</td><td>(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, WePL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 4.442="" 6.1="" 6.4="" 6.6="" 7.0="" 7<="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page="" refusal.="" split="" spoon="" spt="" td="" terminated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.</td><td>(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of</td></pl,></td></pl,></td></pl,>	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wPL, hard - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal. CONTINUED NEXT PAGE 7 SS 4.442 4.42 7 SS 4.42 4.42 7 SS 401.46 5.92 9 SS 88 88 88 88 88 88 88 88 88	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, WePL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.	GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 1.="" 6.1="" 6.4="" 6.6="" 7.0="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page<="" refusal.="" split="" spoon="" spt="" td="" termninated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w<pl, -="" 1.="" 4.442="" 6.1="" 6.4="" 6.6="" 7.0="" 7<="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page="" refusal.="" split="" spoon="" spt="" td="" terminated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.</td><td>(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of</td></pl,></td></pl,>	GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, -="" 1.="" 4.442="" 6.1="" 6.4="" 6.6="" 7.0="" 7<="" 9.1="" at="" attempted="" auger="" borehole="" continued="" depths="" due="" end="" from="" grinding="" hard="" m="" next="" notes:="" of="" page="" refusal.="" split="" spoon="" spt="" td="" terminated="" to=""><td>GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.</td><td>(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.</td><td>(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of</td></pl,>	GP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of 5.0 m to 5.2 m - Auger grinding from depths of 5.0 m to 5.2 m (CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, wet, PL, hard - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT attempted at 9.1 m termninated due to split spoon refusal.	(CF) GRAVEL and SAND, grey, non-cohesive, wet, dense to very dense - Auger grinding from depths of 5.0 m to 5.2 m - Auger grinding from depths of 6.1 m to 6.4 m - Auger grinding from depths of 6.6 m to 7.0 m END OF BOREHOLE NOTES: 1. SPT altempted at 9.1 m terminated due to split spoon refusal.	(CP) GRAVEL and SAND, grey; non-cohesive, wet, dense to very dense of the cohesive, wet, hard of the cohesive, hard of the cohesive, wet, hard of the cohesive, wet, hard of the cohesive, hard of the cohesive, hard of

LOCATION: N 4837269.10; E 551432.50

RECORD OF BOREHOLE: 20-8

SHEET 2 OF 2 DATUM: Geodetic BORING DATE: December 21, 2020

HAMMER TYPE: AUTOMATIC

SP	T/DCF	T HAMMER: MAS	SS, 64kg; DR	OP, 760mm															HAMI	MER T	YPE: AUTOMA	ATIC
Щ	100		SOIL PR	OFILE			SA	MPL	ES	DYNAN	ΠC PEN ΓANCE,	ETRATI BLOWS	ON /0.3m	>	HYDRA	AULIC Co k, cm/s	ONDUCT	ΓΙVΙΤΥ,	T	اق	D/EZC:	4CTCC
DEPTH SCALE METRES	BORING METHOD	DE	SCRIPTION		STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	2	0 4	10	60	80 - Q - • 9 U - O	10 W	O ⁻⁶ 10 L ATER CO	O ⁻⁵ 10 DNTENT	0 ⁻⁴ 1 PERCE		ADDITIONAL LAB. TESTING	PIEZON O STANI INSTALI	R OPIPE
DE	BOR				STRA	(m)	N		BLO	2				80	Wr 1		0 3		WI IO	4 5		
- 10		CONTINUED F											Ĺ						Ĺ		20-8-S	20-8
10		Ground water shallow monitori	level measuing well (20-8	red in 3-S) as																		
		follows:																				
- 11		Date 19-Jan-21 29-Jan-21 12-Mar-21 11-Jun-21	Depth(m) 0.63 0.87 0.43 1.29	Elev. (m) 406.82 406.58 407.02 406.16																		
		Ground water monitoring well (level measu (20-8-D) as f	red in deep ollows:																		
- 12		Date 19-Jan-21 29-Jan-21 12-Mar-21 11-Jun-21	Depth(m) 0.62 1.23 1.20 2.37	Elev. (m) 406.76 406.15 406.19 405.01																		
13																						
14																						
15																						
. 15																						
· 16																						
- 17																						
- 18																						
- 19																						
00																						
20																						
DE	PTH S	CALE									GC	DLD BER OF V	ER							L	OGGED: AGE	3
1:	50										MEMI	BER OF \	WSP							СН	ECKED: MJE	3

LOCATION: N 4837682.00; E 551736.20

RECORD OF BOREHOLE: 20-9

SHEET 1 OF 1 DATUM: Geodetic BORING DATE: January 5, 2021

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm

HAMMER TYPE: AUTOMATIC

Ļ L	1 0		SOIL PROFILE			SAN	MPLE	S	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ود	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
'	BO	<u> </u>		STF	(m)			B	20 40 60 80	10 20 30 40		
0		\downarrow	GROUND SURFACE		414.98 0.00			_				
			TOPSOIL		414.68		00					50 mm Stick-up
			(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; brown (TILL); cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>0.30</td><td>1</td><td>SS</td><td>4</td><td></td><td>0</td><td></td><td>Casing</td></pl,>		0.30	1	SS	4		0		Casing
1						2	SS	15		0		
2			- Auger grinding from depths of 1.5 m to 2.3 m			3	SS	18		0	E	Bentonite
						4	SS	64		0		11-Jun-21
3			- Auger grinding from depths of 2.7 m to 3.1 m			5	ss d	50/).13		0		
4	Track Mounted CME 75	150 mm O.D. Tricone									\$	Sand Vi
5			- Auger grinding from depths of 4.9 m to 6.1 m			6	SS	50/ 0.2		0		W. XI,
6			- Auger grinding from depths of 6.1 m to 7.0 m			7	ss d	50/).05		0	\$	Screen and Sand
7			END OF PODELIOLE		407.26 7.72	8	ss	50/ 0.1		0		<u> </u>
8			END OF BOREHOLE NOTE: 1. Ground water level measured in monitoring well as follows:		1.12							
9			Date Depth(m) Elev. (m) 19-Jan-21 0.41 414.58 29-Jan-21 0.88 414.11 12-Mar-21 0.37 414.61 11-Jun-21 2.11 412.88									
10												
DEI	PTH 50	H S(CALE					(GOLDER MEMBER OF WSP			GGED: AGB

RECORD OF BOREHOLE: 20-10

SHEET 1 OF 2 DATUM: Geodetic

LOCATION: N 4838305.50; E 552497.70

BORING DATE: January 11, 2021

	무	SOIL PROFILE			SA	MPL	ES	DYNAMIC PI RESISTANC	E, BLOW	/S/0.3m		k	ILIC CONDUCTI\ , cm/s	vii i, T	ق ــ [DIEZOME	TED
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STR Cu, kPa	40 ENGTH	60 nat V. ⊣ rem V. €		10 ⁻⁶ WA ¹ Wp I	10 ⁵ 10 ⁴ FER CONTENT P	PERCENT	ADDITIONAL LAB. TESTING	PIEZOME OR STANDP INSTALLA	PIPE
		GROUND SURFACE	0,	424.01				20	40	60	80	10	20 30	40		20-10-S	20-1
0 1 1 2 3 3 4 4 5 5 6 6 9 9	Track Mounted CME 75	(SP) SAND, trace gravel, trace to some fines; brown; non-cohesive, moist to wet, compact to very dense		424.01 0.00 423.40 0.61	1		25 35 70 47								MH		20-1
10		CONTINUED NEXT PAGE					_									Screen and Sand	7, 46, 46

RECORD OF BOREHOLE: 20-10

SHEET 2 OF 2 DATUM: Geodetic

LOCATION: N 4838305.50; E 552497.70

BORING DATE: January 11, 2021

Щ	40D		SOIL PR	OFILE			SAN	/IPLE	S D R	(NAMIC F ESISTANO	ENETRA CE, BLOW	ΓΙΟΝ S/0.3m	1	HYDRA	NULIC Co k, cm/s	ONDUCTI	VITY,	Τ	اوً	DIEZONACZ	TEP
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLCWS/U.3m	20 HEAR STF I, kPa 20	40 RENGTH	nat V. H	80 - Q - • 9 U - O	10 W/ Wp	ATER C	05 107 DNTENT F	PERCEN	IT VI	ADDITIONAL LAB. TESTING	PIEZOMET OR STANDPII INSTALLAT	IPE
10		(SP) SAND, tr	D FROM PREVIO ace gravel, trad non-cohesive, r	ce to some						20	40	60	80	1	U 2	0 30	40	J		20-10-S	20-1
11	Track Mounted CME 75		y dense				10	SS 8	34							0				Screen and Sand	NO N
12	-					411.36		SS 8	31						0						
13		shallow monit	er level measu		***	12.65															
14		Date 19-Jan-21 29-Jan-21 12-Mar-21 11-Jun-21	Depth(m) 3.80 3.87 3.71 3.84	Elev. (m) 420.18 420.11 420.28 420.14																	
		1	ll (20-6-D) as f	ollows:																	
15		Date 19-Jan-21 29-Jan-21 12-Mar-21 11-Jun-21	Depth(m) 3.83 3.92 3.73 3.87	Elev. (m) 420.18 420.10 420.28 420.14																	
16																					
17																					
18																					
19																					
20																					

(SM) gravelly SILTY SAND (TILL)

FIGURE i

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m
•	20-5	6	4.6 - 4.7
•	20-2	8	7.6 - 7.7

Project Number: 20141301

Checked By: _____ Golder Associates Date: 14-Jun-21

(SM) gravelly SILTY SAND

FIGURE ii

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)
•	20-4	6	46-50

Project Number: 20141301

Checked By: _____ Golder Associates Date: 14-Jun-21

(ML) SILT and SAND (TILL)

FIGURE iii

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m)
•	20-6	9	82-86

Project Number: 20141301

Checked By: _____ Golder Associates Date: 14-Jun-21

(SP) SAND

FIGURE iv

LEGEND

SYMBOL	BOREHOLE	SAMPLE	DEPTH(m
•	20-7	7	6.1 - 6.6
•	20-10	8	7.6 - 8.1

Project Number: 20141301

Checked By: _____

Golder Associates

Date: 14-Jun-21

April 4, 2023 20141301

APPENDIX E

Water Level Depths and Elevations

Table E-1 - Water Level Depths and Elevations Proposed Mixed-Use Development, Fergus, Ontario

Monitoring	Ground Surface	Scree	an Int	low (al	19-J	an-21	29-J	an-21	12-M	lar-21	11-J	un-21	23-	Jul-21	19-N	ov-21	30-J	05-Jul-22		ul-22	19-J	Jul-22
Well ID	Elevation (m)	Scree	(m)	lervai	Depth (mbgs)	Elevation (m)	Depth (mbgs)	Elevation (m)														
BH20-2	418.26	410.2	to	413.2	2.52	415.74	2.48	415.79	1.30	416.97	2.39	415.87	3.61	414.65	2.50	415.76	2.40	415.86	2.53	415.73	3.16	415.10
BH20-3	413.40	406.7	to	409.8	1.12	412.28	1.49	411.92	0.69	412.71	1.92	411.48	2.43	410.98	1.24	412.16	NA - De	estroyed	NA - De	estroyed NA - Destr		estroyed
BH20-4	419.93	413.3	to	414.8	1.17	418.76	1.51	418.42	0.68	419.25	1.80	418.13	2.35	417.58	1.32	418.61	1.95	417.98	2.03	417.90	2.31	417.62
BH20-5	407.29	400.7	to	403.7	0.65	406.65	0.75	406.55	0.60	406.69	1.17	406.12	1.97	405.32	0.68	406.61	1.02	406.27	1	-	1.48	405.81
BH20-6-S	410.47	404.0	to	407.0	1.11	409.37	1.06	409.42	0.71	409.76	1.27	409.21	1.57	408.90	0.80	409.68	1.49	408.99	1.55	408.92	1.78	408.69
BH20-6-D	410.46	399.3	to	402.3	3.24	407.22	3.33	407.14	3.34	407.13	3.75	406.71	4.04	406.42	2.99	407.48	3.67	406.79	3.72	406.74	3.91	406.55
BH20-7	417.65	410.9	to	412.4	0.22	417.43	0.42	417.23	-0.12	417.77	0.48	417.17	0.84	416.81	0.16	417.49	0.68	416.98	-	-	0.86	416.79
BH20-8-S	407.45	403.2	to	406.2	0.63	406.82	0.87	406.58	0.43	407.02	1.29	406.16	1.51	405.94	0.61	406.84	1.32	406.13	1.37	406.08	1.63	405.82
BH20-8-D	407.38	399.1	to	400.6	0.62	406.76	1.23	406.15	1.20	406.19	2.37	405.01	3.00	404.38	1.85	405.54	2.47	404.92	2.53	404.85	2.85	404.53
BH20-9	414.98	408.3	to	411.4	0.41	414.58	0.88	414.11	0.37	414.61	2.11	412.88	2.45	412.53	0.68	414.30	2.14	412.85	-	-	2.54	412.44
BH20-10-S	423.98	417.3	to	420.4	3.80	420.18	3.87	420.11	3.71	420.28	3.84	420.14	4.02	419.97	3.98	420.01	3.78	420.20	3.81	420.17	3.91	420.07
BH20-10-D	424.01	412.8	to	415.8	3.83	420.18	3.92	420.10	3.73	420.28	3.87	420.14	4.05	419.96	4.02	419.99	3.81	420.20	3.84	420.17	3.94	420.07
Piezometer																						
P1	406.55	-	-	-	0.31	406.24	0.34	406.21	0.04	406.51	0.49	406.06	0.39	406.16	0.31	406.24	0.47	406.09	0.46	406.09	0.57	405.98
P2	408.49	-	ı	-	0.21	408.29	0.26	408.24	-0.01	408.50	0.46	408.03	0.45	408.05	0.19	408.30	0.43	408.06	0.48	408.02	0.65	407.84
P3	411.11	-	-	-	0.27	410.84	0.32	410.80	0.12	410.99	0.40	410.72	0.86	410.26	0.27	410.85	0.87	410.24	1	-	D	RY
Staff Gauge																						
SG1	405.82	-	-	-	-0.35	406.17	N/A -	Frozen	-0.44	406.26	-0.40	406.22	-0.39	406.21	-0.36	406.18	NA - De	estroyed	NA - De	estroyed	NA - De	estroyed
SG2	407.57	-	-	-	-0.54	408.11	N/A -	Frozen	-0.795	408.37	-0.42	407.99	-0.64	408.21	-0.58	408.15	-0.54	408.11	-0.66	408.23	-0.43	408.00
SG3	410.72	-	-	-	N/A -	Frozen	N/A -	Frozen	-0.15	410.87	-0.02	410.74	D	RY	-0.05	410.77	D	RY	-	-	D	RY

Notes:

- 1) mbgs = metres below ground surface
- 2) A negative water level depth represents an above ground surface water level.
- 3) NA = Not Accessible

April 4, 2023 20141301

APPENDIX F

Hydraulic Conductivity Testing

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-2 Test Date: 23Jul2021

AQUIFER DATA

Saturated Thickness: 5.39 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-2)

Initial Displacement: 0.815 m

Total Well Penetration Depth: 5.39 m

Casing Radius: 0.025 m

Static Water Column Height: 5.39 m

Solution Method: Bouwer-Rice

Screen Length: 3.5 m Well Radius: 0.075 m

SOLUTION

Aguifer Model: Unconfined

_

K = 2.3E-8 m/sec

y0 = 0.7645 m

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-3 Test Date: 11June2021

AQUIFER DATA

Saturated Thickness: 5.68 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-3)

Initial Displacement: 1.02 m

Total Well Penetration Depth: 5.68 m

Casing Radius: 0.025 m

Static Water Column Height: 5.68 m

Screen Length: 3.3 m Well Radius: 0.075 m

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 1.654E-7 m/sec y0 = 0.9717 m

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-4 Test Date: 11June2021

AQUIFER DATA

Saturated Thickness: 6.28 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-4)

Initial Displacement: 1. m

Total Well Penetration Depth: 5.8 m

Casing Radius: 0.025 m

Static Water Column Height: 6.28 m

Solution Method: Bouwer-Rice

Screen Length: 2.1 m Well Radius: 0.108 m

SOLUTION

Aguifer Model: Unconfined

y0 = 1.049 m

K = 5.439E-6 m/sec

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-6-S Test Date: 11June2021

AQUIFER DATA

Saturated Thickness: 6.24 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-6-S)

Initial Displacement: 1.03 m

Static Water Column Height: 6.24 m

Total Well Penetration Depth: 6.24 m

Screen Length: 3.4 m Well Radius: 0.063 m

Casing Radius: 0.025 m

SOLUTION

Aquifer Model: Unconfined Solution

Solution Method: Bouwer-Rice

K = 3.403E-8 m/sec

y0 = 1.005 m

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-8-S Test Date: 11June2021

AQUIFER DATA

Saturated Thickness: 4.63 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-8-S)

Initial Displacement: 1. m

Total Well Penetration Depth: 3.91 m

Casing Radius: 0.034 m

Static Water Column Height: 4.63 m

Screen Length: 3.4 m Well Radius: 0.05 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.031E-7 m/sec

y0 = 0.9335 m

PROJECT INFORMATION

Company: WSP Canada Inc.
Client: Tathum Engineering Ltd

Project: 20141301 Location: South Fergus Test Well: BH20-10-S Test Date: 11June2021

AQUIFER DATA

Saturated Thickness: 8.81 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH20-10-S)

Initial Displacement: 0.31 m

Static Water Column Height: 8.81 m

Total Well Penetration Depth: 3.76 m

Screen Length: 3.3 m Well Radius: 0.075 m

Casing Radius: 0.025 m

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.456E-5 m/sec

y0 = 0.3616 m

Constant Head Permeameter Test Report - GP20-2

1.5 m South of BH20-2 **Approximate Location:** Test Depth: 0.61 m below grade

Figure F-1

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)
0.0	0.0	0.0	0.00
1.0	17.1	17.1	17.10
2.0	17.1	0.0	0.00
3.0	17.1	0.0	0.00
4.0	17.1	0.0	0.00
5.0	17.2	0.1	0.10
6.0	17.4	0.2	0.20
7.0	17.6	0.2	0.20
8.0	18.1	0.5	0.50
10.0	18.2	0.1	0.05
12.0	18.8	0.6	0.30
14.0	19.5	0.7	0.35
16.0	20.0	0.5	0.25
18.0	20.6	0.6	0.30
20.0	21.2	0.6	0.30
22.0	21.8	0.6	0.30
24.0	22.4	0.6	0.30

Soil Type 3 - gravelly SILTY SAND (TILL)

Interpreted Rate of:

Water Level Change (R₁) = 5E-03 cm/s

Steady Intake Water Rate (Q₁) = 2E-01 cm³/s

> hole radius (a) = cm

Water column height in hole (H₁) = 10

Shape factor for $H_1/a = (C_1) =$ 1.3

Soil Type Coefficient $\alpha^* =$ 0.12 cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (Kfs)

 $K_{fs} =$ 2E-04 cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW:

Constant Head Permeameter Test Report - Test GP20-4

Approximate Location: 1.4 m North of BH20-4
Test Depth: 0.60 m below grade

Figure F-2

Rate of Water Level Change vs. Time

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)
0.0	0.0	0.0	0.00
1.0	4.4	4.4	4.40
2.0	4.4	0.0	0.00
3.0	4.5	0.1	0.10
4.0	4.7	0.2	0.20
6.0	5.0	0.3	0.15
8.0	5.3	0.3	0.15
10.0	5.7	0.4	0.20
12.0	5.9	0.2	0.10
14.0	6.2	0.3	0.15
16.0	6.5	0.3	0.15
18.0	6.8	0.3	0.15
20.0	7.1	0.3	0.15

Soil Type 3 - sandy SILT

Interpreted Rate of:

Water Level Change (R_1) = 3E-03 cm/s

Steady Intake Water Rate (Q_1) = 9E-02 cm³/s

hole radius (a) = 3 cm

Water column height in hole (H_1) = 10 cm

Shape factor for H_1/a = (C_1) = 1.3
Soil Type Coefficient α^* = 0.12 cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (Kfs)

K_{fs} = **1E-04** cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW: JG

Constant Head Permeameter Test Report - GP20-6

Approximate Location: 2 m East of BH20-6-D Test Depth: 0.65 m below grade

Figure F-3

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)
0.0	0.0	0.0	0.00
1.0	8.5	8.5	8.50
2.0	8.5	0.0	0.00
4.0	8.5	0.0	0.00
6.0	8.5	0.0	0.00
10.0	8.5	0.0	0.00
12.0	13.4	4.9	2.45
25.0	13.7	0.3	0.02
27.0	19.8	6.1	3.05
28.0	20.0	0.2	0.20
29.0	20.1	0.1	0.10
30.0	20.1	0.0	0.00
32.0	21.2	1.1	0.55
34.0	22.9	1.7	0.85
36.0	24.6	1.7	0.85
37.0	25.5	0.9	0.90
38.0	26.4	0.9	0.90
39.0	27.3	0.9	0.90
40.0	28.2	0.9	0.90

Soil Type 3 - sandy SILT to SILTY SAND

Interpreted Rate of:

Water Level Change (R₁) = 2E-02 cm/s Steady Intake Water Rate (Q₁) = 3E-02 cm³/s hole radius (a) = cm Water column height in hole (H₁) = 20 cm Shape factor for $H_1/a = (C_1) =$ 2.0 Soil Type Coefficient $\alpha^* =$ 0.12 cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (Kfs)

K_{fs} = **2E-05** cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW: ____ JG

Constant Head Permeameter Test Report - Test GP20-7

Approximate Location: 2 m East of BH20-7
Test Depth: 0.63 m below grade

Figure F-4

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)			
0.0	0.0	0.0	0.00			
1.0	11.5	11.5	11.50			
2.0	11.5	0.0	0.00			
4.0	11.5	0.0	0.00			
6.0	11.5	0.0	0.00			
8.0	11.5	0.0	0.00			
10.0	11.6	0.1	0.05			
13.0	15.2	3.6	1.20			
16.0	16.3	1.1	0.37			
18.0	16.7	0.4	0.20			
20.0	17.0	0.3	0.15			
22.0	17.4	0.4	0.20			
24.0	17.8	0.4	0.20			
26.0	18.1	0.3	0.15			
28.0	18.4	0.3	0.15			
30.0	18.7	0.3	0.15			

Soil Type 3 - sandy SILTY CLAY to CLAYEY SILT

Interpreted Rate of:

Water Level Change (R_1) = 3E-03 cm/s Steady Intake Water Rate (Q_1) = 9E-02 cm³/s

hole radius (a) = 3 cm

Water column height in hole $(H_1) = 20$ cm

Shape factor for $H_1/a = (C_1) = 2.0$

Soil Type Coefficient $\alpha^* = 0.12$ cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (K_{fs})

K_{fs} = **5E-05** cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW: JG

Constant Head Permeameter Test Report - GP20-8

Approximate Location: 1.5 m West of BH20-8-D Test Depth: 0.71 m below grade

Figure F-5

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)
0.0	0.0	0.0	0.00
1.0	9.5	9.5	9.50
3.0	10.7	1.2	0.60
5.0	12.6	1.9	0.95
7.0	14.4	1.8	0.90
9.0	16.0	1.6	0.80
11.0	17.6	1.6	0.80
13.0	19.2	1.6	0.80
15.0	20.7	1.5	0.75
18.0	22.2	1.5	0.50
21.0	23.8	1.6	0.53
23.0	27.0	3.2	1.60
25.0	28.4	1.4	0.70
27.0	30.1	1.7	0.85
29.0	31.6	1.5	0.75
31.0	33.1	1.5	0.75

Soil Type 3 - sandy SILT

Interpreted Rate of:

Water Level Change (R_1) = 1E-02 cm/s

Steady Intake Water Rate (Q_1) = 4E-01 cm³/s

hole radius (a) = 3 cm

Water column height in hole (H_1) = 10 cm

Shape factor for H_1/a = (C_1) = 1.3
Soil Type Coefficient α^* = 0.12 cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (Kfs)

K_{fs} = **5E-04** cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW: ____ JG

Constant Head Permeameter Test Report - GP20-10

Approximate Location: 1 m North of BH20-10-S
Test Depth: 0.65 m below grade

Figure F-6

Elapsed Time (min)	Water Level in Reservoir (cm)	Water Level Change (cm)	Infiltration (cm/min)
0.0	0.0	0.0	0.00
1.0	8.8	8.8	8.80
2.0	10.5	1.7	1.70
3.0	11.9	1.4	1.40
4.0	13.3	1.4	1.40
5.0	14.5	1.2	1.20
6.0	15.8	1.3	1.30
7.0	17.0	1.2	1.20
8.0	18.4	1.4	1.40
9.0	19.4	1.0	1.00
10.0	20.5	1.1	1.10
11.0	21.6	1.1	1.10
12.0	22.7	1.1	1.10
13.0	23.8	1.1	1.10
14.0	24.9	1.1	1.10

Soil Type 3 - SAND

Interpreted Rate of:

Water Level Change (R_1) = 2E-02 cm/s

Steady Intake Water Rate (Q_1) = 6E-01 cm³/s

hole radius (a) = 3 cm

Water column height in hole (H_1) = 10 cm

Shape factor for H_1/a = (C_1) = 1.3
Soil Type Coefficient α^* = 0.12 cm⁻¹

Single Head Analysis

$$K_{fs} = \frac{C_1 Q_1}{2\pi H_1^2 + \pi \alpha^2 C_1 + 2\pi \frac{H_1}{\alpha^*}}$$

Field Saturated Hydraulic Conductivity (Kfs)

K_{fs} = **7E-04** cm/s

=input data

DATE: 2022-07-19

PROJECT: 20141301

PREPARED BY: AGB

REVIEW: ____JG

April 4, 2023 20141301

APPENDIX G

Groundwater Analytical Results

CLIENT NAME: GOLDER ASSOCIATES LTD. 100 SCOTIA COURT WHITBY, ON L1N8Y6 (905) 723-2727

ATTENTION TO: Joel Gopaul PROJECT: 20141301

AGAT WORK ORDER: 21T721685

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Mar 23, 2021

PAGES (INCLUDING COVER): 11 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 11

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 21T721685

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Dissolved AI & Hg

	Dicconducting a rig												
DATE RECEIVED: 2021-03-15							DATE REPORTED: 2021-03-23						
		SAMPLE DES	CRIPTION:	20-3-F	20-8-SF	20-10-SF							
		SAM	PLE TYPE:	Water	Water	Water							
		DATE	SAMPLED:	2021-03-12 10:00	2021-03-12 12:00	2021-03-12 16:00							
Parameter	Unit	G/S	RDL	2217740	2217743	2217745							
Aluminum-dissolved	mg/L	*	0.004	< 0.004	<0.004	<0.004							
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	<0.0001	<0.0001							
T. Control of the Con													

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2217740-2217745 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

Certified By:

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T721685

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2021-03-15									DATE REPORTED: 2021-03-23
	S		CRIPTION: PLE TYPE: SAMPLED:	20-3 Water 2021-03-12 10:00		20-8-S Water 2021-03-12 12:00		20-10-S Water 2021-03-12 16:00	
Parameter	Unit	G/S	RDL	2217736	RDL	2217742	RDL	2217744	
Electrical Conductivity	μS/cm		2	920	2	663	2	2210	
рН	pH Units	6.5-8.5	NA	7.87	NA	7.90	NA	7.71	
Saturation pH (Calculated)				6.52		6.79		6.75	
Langelier Index (Calculated)				1.35		1.11		0.960	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	583	0.5	430	0.5	508	
Total Dissolved Solids	mg/L		20	530	20	354	20	1150	
Alkalinity (as CaCO3)	mg/L		5	401	5	276	5	278	
Bicarbonate (as CaCO3)	mg/L		5	401	5	276	5	278	
Carbonate (as CaCO3)	mg/L		5	<5	5	<5	5	<5	
Hydroxide (as CaCO3)	mg/L		5	<5	5	<5	5	<5	
Fluoride	mg/L		0.05	< 0.05	0.05	< 0.05	0.07	< 0.07	
Chloride	mg/L		0.50	24.4	0.20	25.3	1.0	528	
Nitrate as N	mg/L		0.25	<0.25	0.10	0.65	0.5	0.6	
Nitrite as N	mg/L		0.25	<0.25	0.10	<0.10	0.5	<0.5	
Bromide	mg/L		0.25	<0.25	0.10	<0.10	0.5	<0.5	
Sulphate	mg/L		0.50	70.9	0.20	35.0	1.0	16.2	
Ortho Phosphate as P	mg/L		0.50	<0.50	0.20	<0.20	1.0	<1.0	
Reactive Silica	mg/L		0.25	21.6	0.05	15.1	0.05	8.09	
Ammonia as N	mg/L		0.02	< 0.02	0.02	0.04	0.02	0.14	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	<0.000002	0.000002	0.00173	0.000002	0.00400	
Total Phosphorus	mg/L	*	0.02	0.05	0.06	0.19	0.02	< 0.02	
Total Organic Carbon	mg/L		0.5	1.4	0.5	1.2	0.5	2.3	
True Colour	TCU		5	<5	5	<5	5	<5	
Turbidity	NTU		0.5	39.4	0.5	234	0.5	4.4	
Total Calcium	mg/L		0.05	137	0.05	115	0.05	166	
Total Magnesium	mg/L		0.05	58.5	0.05	34.7	0.05	22.7	
Total Potassium	mg/L		0.05	1.60	0.05	2.15	0.05	1.34	
Total Sodium	mg/L		0.05	8.05	0.05	5.56	0.05	234	
Total Antimony	mg/L	0.020	0.001	<0.001	0.001	<0.001	0.001	< 0.001	

Certified By:

Iris Verastegui

CLIENT NAME: GOLDER ASSOCIATES LTD.

Certificate of Analysis

AGAT WORK ORDER: 21T721685

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: SAMP

Water Quality Assessment - PWQQ (mg/L)

			V	alei Qualit	y Assessi	Hent - PWQC	(ilig/L)		
DATE RECEIVED: 2021-03-1	5								DATE REPORTED: 2021-03-23
	\$		CRIPTION: PLE TYPE: SAMPLED:	20-3 Water 2021-03-12		20-8-S Water 2021-03-12		20-10-S Water 2021-03-12	
Parameter	Unit	G/S	RDL	10:00 2217736	RDL	12:00 2217742	RDL	16:00 2217744	
otal Arsenic	mg/L	0.1	0.003	0.004	0.003	0.004	0.003	<0.003	
Total Barium	mg/L		0.002	0.120	0.002	0.134	0.002	0.101	
otal Beryllium	mg/L	*	0.0005	< 0.0005	0.0005	< 0.0005	0.0005	< 0.0005	
otal Boron	mg/L	0.2	0.010	0.018	0.010	0.015	0.010	0.023	
otal Cadmium	mg/L	0.0002	0.0001	<0.0001	0.0001	< 0.0001	0.0001	<0.0001	
otal Chromium	mg/L		0.003	< 0.003	0.003	0.003	0.003	< 0.003	
Total Cobalt	mg/L	0.0009	0.0005	0.0008	0.0005	0.0015	0.0005	< 0.0005	
otal Copper	mg/L	0.005	0.001	0.001	0.001	0.003	0.001	<0.001	
otal Iron	mg/L	0.3	0.010	1.84	0.010	3.30	0.010	0.049	
otal Lead	mg/L	*	0.001	<0.001	0.001	0.004	0.001	<0.001	
otal Manganese	mg/L		0.002	0.160	0.002	0.287	0.002	0.115	
otal Molybdenum	mg/L	0.040	0.002	< 0.002	0.002	0.002	0.002	<0.002	
Total Nickel	mg/L	0.025	0.003	< 0.003	0.003	0.004	0.003	0.021	
otal Selenium	mg/L	0.1	0.004	< 0.004	0.004	< 0.004	0.004	<0.004	
Total Silver	mg/L	0.0001	0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	
Total Strontium	mg/L		0.005	0.288	0.005	0.222	0.005	0.717	
Total Thallium	mg/L	0.0003	0.0003	< 0.0003	0.0003	<0.0003	0.0003	< 0.0003	
Гotal Tin	mg/L		0.002	< 0.002	0.002	<0.002	0.002	< 0.002	
Total Titanium	mg/L		0.002	0.016	0.002	0.122	0.002	< 0.002	
Total Tungsten	mg/L	0.030	0.010	<0.010	0.010	<0.010	0.010	<0.010	
Total Uranium	mg/L	0.005	0.002	< 0.002	0.002	0.002	0.002	< 0.002	
Total Vanadium	mg/L	0.006	0.002	< 0.002	0.002	0.005	0.002	< 0.002	
Total Zinc	mg/L	0.030	0.005	< 0.005	0.005	0.014	0.005	< 0.005	
Total Zirconium	mg/L	0.004	0.004	<0.004	0.004	<0.004	0.004	<0.004	

Certified By:

Tris Verastegui

Certificate of Analysis

AGAT WORK ORDER: 21T721685

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:

ATTENTION TO: Joel Gopaul

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2021-03-15 DATE REPORTED: 2021-03-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2217736 Dilution required, RDL has been increased accordingly.

Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as

calculated.

2217742-2217744 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE:

Certified By:

Tris Verastegui

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 21T721685

PROJECT: 20141301

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Joel Gopaul

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2217736	20-3	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	1.84
2217742	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0015
2217742	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	3.30

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 20141301

AGAT WORK ORDER: 21T721685

ATTENTION TO: Joel Gopaul

SAMPLING SITE: SAMPLED BY:

PARAMETER	LING SITE:							AIVIP	LED B	1.					
PARAMETER Batch Sample Dup #1 Dup #2 RPD Method Walue Value Cumit Cumit Dup #2 Cumit Dup #2				Wate	er Ar	nalys	is								
Marca Marc	te: Mar 23, 2021			DUPLICATE	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
Water Quality Assessment - PWOO (mg/L)	DADAMETED		Dun #1	Dun #2	PPD					Pacayary	Liv		Pacayary	Lie	ptable nits
Electrical Conductivity 2217742 2217742 7-90 7-83 3.5% NA 101% 90% 110% 90% 107% 7-807	FANAMETER	ld ld	Dup #1	Dup #2	KFD		Value	Lower	Upper	Recovery		Upper	Recovery	Lower	Upper
PH	Quality Assessment - PWC	lO (mg/L)				•	•				•				
Total Dissolved Solids	al Conductivity	2217742 2217742	663	665	0.3%	< 2	102%	90%	110%						
Alkalinity (as CaCO3)		2217742 2217742	7.90	7.63	3.5%	NA	101%	90%	110%						
Bicarbonate (as CaCO3)	ssolved Solids	2207987	172	180	4.5%	< 20	98%	80%	120%						
Carbonate (as CaCO3)	y (as CaCO3)	2217742 2217742	276	273	1.1%	< 5	88%	80%	120%						
Hydroxide (as CaCO3) 2217742 2217742	nate (as CaCO3)	2217742 2217742	276	273	1.1%	< 5	NA								
Fluoride 2217736 2217736 < 0.05	ate (as CaCO3)	2217742 2217742	<5	<5	NA	< 5	NA								
Chloride	de (as CaCO3)	2217742 2217742	<5	<5	NA	< 5	NA								
Nitrate as N)	2217736 2217736	< 0.05	< 0.05	NA	< 0.05	99%	90%	110%	104%	90%	110%	100%	85%	115%
Nitrite as N 2217736 2217736 <0.25	;	2217736 2217736	24.4	25.0	2.4%	< 0.10	90%	70%	130%	104%	80%	120%	107%	70%	130%
Bromide	as N	2217736 2217736	<0.25	<0.25	NA	< 0.05	94%	70%	130%	105%	80%	120%	107%	70%	130%
Bromide	s N	2217736 2217736	<0.25	<0.25	NA	< 0.05	94%	70%	130%	102%	80%	120%	102%	70%	130%
Sulphate)													85%	115%
Ortho Phosphate as P	е	2217736 2217736												70%	130%
Reactive Silica 2222108 18.1 18.3 1.1% < 0.05 98% 90% 110% 100% 90% 110% 115% 80% Ammonia as N 2220598														70%	130%
Total Phosphorus 2222108	•	2222108	18.1	18.3	1.1%	< 0.05	98%	90%	110%	100%	90%	110%	115%	80%	120%
Total Phosphorus 2222108 <0.02 <0.02 NA <0.02 101% 70% 130% 102% 80% 120% 105% 70% 7	ia as N	2220598	<0.02	<0.02	NA	< 0.02	106%	70%	130%	99%	80%	120%	117%	70%	130%
Total Organic Carbon 2217736 2217736 1.4 1.3 NA < 0.5 92% 90% 110% 91% 90% 110% 90% 80 True Colour 2217736 2217736 < 5 < 5														70%	130%
True Colour Turbidity 2217736 2217736 39.4 39.2 0.5% < 0.5 101% 80% 120% Total Calcium 2213263 7.79 7.10 9.3% < 0.05 102% 70% 130% 101% 80% 120% 98% 70 Total Magnesium 2213263 0.83 0.87 4.7% < 0.05 108% 70% 130% 107% 80% 120% 105% 70 Total Potassium 2213263 0.31 0.08 NA < 0.05 107% 70% 130% 103% 80% 120% 102% 70 Total Sodium 2213263 2.74 2.46 10.8% < 0.05 106% 70% 130% 101% 80% 120% 104% 70 Total Antimony 2213263 < 0.001 < 0.001 NA < 0.001 107% 70% 130% 104% 80% 120% 98% 70 Total Barium 2213263 < 0.003 < 0.003 NA < 0.003 94% 70% 130% 104% 80% 120% 97% 70 Total Beryllium 2213263 < 0.0005 < 0.0005 NA < 0.0005 NA < 0.0005 100% 70% 130% 100% 80% 120% 95% 70 Total Boron 2213263 < 0.010 < 0.010 NA < 0.001 107% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 < 0.001 < 0.001 NA < 0.001 101% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 < 0.001 < 0.0005 NA < 0.0005 NA < 0.0005 100% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 < 0.001 < 0.001 NA < 0.0001 101% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 < 0.001 < 0.001 NA < 0.0001 101% 70% 130% 100% 80% 120% 95% 70 Total Cobalt 2213263	•													80%	120%
Tutplidity 2217736 2217736 39.4 39.2 0.5% < 0.5 101% 80% 120% Total Calcium 2213263 7.79 7.10 9.3% < 0.05 102% 70% 130% 101% 80% 120% 98% 70 70 1014 Magnesium 2213263 0.83 0.87 4.7% < 0.05 108% 70% 130% 107% 80% 120% 105% 70 70 1014 Potassium 2213263 0.31 0.08 NA < 0.05 107% 70% 130% 103% 80% 120% 105% 70 70 1014 Potassium 2213263 2.74 2.46 10.8% < 0.05 106% 70% 130% 101% 80% 120% 104% 70 70 1014 Antimony 2213263 < 0.001 < 0.001 NA < 0.001 107% 70% 130% 105% 80% 120% 104% 70 70 1014 Antimony 2213263 < 0.001 < 0.001 NA < 0.001 107% 70% 130% 105% 80% 120% 98% 70 70 1014 Magnesium 2213263 < 0.003 < 0.003 NA < 0.003 94% 70% 130% 104% 80% 120% 98% 70 70 1014 Magnesium 2213263 < 0.005 0.005 NA < 0.002 99% 70% 130% 104% 80% 120% 97% 70 70 1014 Magnesium 2213263 < 0.0005 < 0.0005 NA < 0.0005 99% 70% 130% 100% 80% 120% 95% 70 70 1014 Magnesium 2213263 < 0.0010 < 0.010 NA < 0.0010 100% 70% 130% 102% 80% 120% 95% 70 70 70 70 70 70 70 70 70 70 70 70 70	•														
Total Magnesium 2213263 0.83 0.87 4.7% < 0.05 108% 70% 130% 107% 80% 120% 105% 70% 104 Potassium 2213263 0.31 0.08 NA < 0.05 107% 70% 130% 103% 80% 120% 102% 70% 104 Potassium 2213263 2.74 2.46 10.8% < 0.05 106% 70% 130% 101% 80% 120% 104% 70% 104 Potas Pota															
Total Magnesium 2213263 0.83 0.87 4.7% < 0.05 108% 70% 130% 107% 80% 120% 105% 70% 101% 701 101% 101% 101% 101% 101%	alcium	2213263	7.79	7.10	9.3%	< 0.05	102%	70%	130%	101%	80%	120%	98%	70%	130%
Total Potassium 2213263 0.31 0.08 NA <0.05 107% 70% 130% 103% 80% 120% 102% 70 Total Sodium 2213263 2.74 2.46 10.8% <0.05 106% 70% 130% 101% 80% 120% 102% 70 Total Antimony 2213263 <0.001 <0.001 NA <0.001 107% 70% 130% 108% 80% 120% 104% 70 Total Arsenic 2213263 <0.003 <0.003 NA <0.003 NA <0.003 94% 70% 130% 104% 80% 120% 101% 70 Total Barium 2213263 0.015 0.015 0.015 0.09% <0.0002 99% 70% 130% 100% 80% 120% 97% 70 Total Beryllium 2213263 0.015 0.005 0.0005 NA 0.0005 NA 0.0005 NA 0.0005 NA 0.0005 100% 70% 130% 100% 80% 120% 97% 70 Total Boron 2213263 0.010 0.010 NA 0.001 NA 0.001 101% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 0.0001 0.0001 NA 0.0001 NA 0.0001 101% 70% 130% 100% 80% 120% 95% 70 Total Chromium 2213263 0.0003 0.0003 NA 0.0003 NA 0.0001 101% 70% 130% 100% 80% 120% 95% 70 Total Chromium 2213263 0.0003 0.0003 NA 0.0003 NA 0.0003 NA 0.0003 NA 0.0005 99% 70% 130% 100% 80% 120% 96% 70 Total Cobalt 2213263 0.0018 0.0038 0.0037 2.7% 0.0005 99% 70% 130% 100% 80% 120% 98% 70 Total Copper 2213263 0.0011 0.002 NA 0.0001 NA 0.0001 101% 70% 130% 104% 80% 120% 98% 70 Total Copper 2213263 0.0018 0.0018 0.002 NA 0.0001 0.002 NA 0.0001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.00														70%	130%
Total Sodium 2213263 2.74 2.46 10.8% < 0.05 106% 70% 130% 101% 80% 120% 104% 70% 104 Antimony 2213263 < 0.001 < 0.001 NA < 0.001 107% 70% 130% 105% 80% 120% 98% 70% 104 Antimony 2213263 < 0.003 < 0.003 NA < 0.003 94% 70% 130% 104% 80% 120% 97% 70% 104 Arsenic 2213263														70%	130%
Total Antimony 2213263														70%	130%
Total Barium 2213263 0.015 0.015 0.0% < 0.002 99% 70% 130% 100% 80% 120% 97% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 95% 70% 1308 100% 80% 120% 96% 70% 1308 100% 80% 120% 96% 70% 1308 100% 80% 120% 96% 70% 1308 100% 98% 80% 120% 98% 70% 1308 100% 80% 120% 98% 70% 1308 100% 80% 120% 98% 70% 1308 100% 80% 120% 98% 70% 1308 100% 80% 120% 98% 70% 1308 100% 80% 120% 98% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 99% 70% 1308 100% 80% 120% 98% 70% 100% 80% 120% 80%														70%	130%
Total Barium 2213263 0.015 0.015 0.002 99% 70% 130% 100% 80% 120% 97% 70 Total Beryllium 2213263 <0.0005	senic	2213263	<0.003	<0.003	NA	< 0.003	94%	70%	130%	104%	80%	120%	101%	70%	130%
Total Beryllium 2213263 <0.0005 <0.0005 NA <0.0005 100% 70% 130% 102% 80% 120% 95% 70 Total Boron 2213263 <0.010														70%	130%
Total Boron 2213263 <0.010 <0.010 NA < 0.010 100% 70% 130% 100% 80% 120% 95% 70 Total Cadmium 2213263 0.0001 0.0001 NA < 0.0001														70%	130%
Total Cadmium 2213263 0.0001 0.0001 NA < 0.0001 101% 70% 130% 101% 80% 120% 96% 70% Total Chromium 2213263 <0.003	•													70%	130%
Total Cobalt 2213263 0.0038 0.0037 2.7% < 0.0005 99% 70% 130% 104% 80% 120% 100% 70 Total Copper 2213263 0.001 0.002 NA < 0.001														70%	130%
Total Cobalt 2213263 0.0038 0.0037 2.7% < 0.0005 99% 70% 130% 104% 80% 120% 100% 70 Total Copper 2213263 0.001 0.002 NA < 0.001	ıromium	2213263	<0.003	<0.003	NΑ	< 0.003	100%	70%	130%	98%	80%	120%	98%	70%	130%
Total Copper 2213263 0.001 0.002 NA < 0.001 101% 70% 130% 102% 80% 120% 99% 70 Total Iron 2213263 0.308 0.336 8.7% < 0.010														70%	130%
Total Iron 2213263 0.308 0.336 8.7% < 0.010 99% 70% 130% 101% 80% 120% 98% 70% Total Lead 2213263 <0.001														70%	130%
Total Lead 2213263 <0.001 <0.001 NA < 0.001 98% 70% 130% 100% 80% 120% 97% 70%	• •													70%	130%
Total Managangea 2012062 1.45 1.50 2.40/ -0.002 000/ 700/ 4000/ 4040/ 000/ 4000/ 050/ 7/														70%	130%
TURLINGUIGUESE //13/D3 149 150 3.4% /1007 98% /10% 180% 101% 80% 170% USW /1	anganese	2213263	1.45	1.50	3.4%	< 0.002	98%	70%	130%	101%	80%	120%	95%	70%	130%
	· ·													70%	130%
·	•													70%	130%
															130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 7 of 11

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 20141301

AGAT WORK ORDER: 21T721685

ATTENTION TO: Joel Gopaul

SAMPLING SITE: SAMPLED BY:

	,	Wate	r Ana	lysis	(Cor	ntinu	ed)							
RPT Date: Mar 23, 2021		DUPLICATE	.		REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	1 1:-	ptable nits
	la la					value	Lower	Upper	_	Lower	Upper		Lower	Upper
Total Silver	2213263	<0.0001	<0.0001	NA	< 0.0001	103%	70%	130%	105%	80%	120%	100%	70%	130%
Total Strontium	2213263	0.035	0.041	15.8%	< 0.005	99%	70%	130%	102%	80%	120%	103%	70%	130%
Total Thallium	2213263	< 0.0003	< 0.0003	NA	< 0.0003	94%	70%	130%	105%	80%	120%	98%	70%	130%
Total Tin	2213263	< 0.002	< 0.002	NA	< 0.002	101%	70%	130%	105%	80%	120%	98%	70%	130%
Total Titanium	2213263	0.004	< 0.002	NA	< 0.002	102%	70%	130%	109%	80%	120%	102%	70%	130%
Total Tungsten	2213263	<0.010	<0.010	NA	< 0.010	97%	70%	130%	100%	80%	120%	95%	70%	130%
Total Uranium	2213263	<0.002	<0.002	NA	< 0.002	103%	70%	130%	101%	80%	120%	101%	70%	130%
Total Vanadium	2213263	< 0.002	< 0.002	NA	< 0.002	99%	70%	130%	104%	80%	120%	100%	70%	130%
Total Zinc	2213263	< 0.005	0.014	NA	< 0.005	103%	70%	130%	105%	80%	120%	110%	70%	130%
Total Zirconium	2213263	<0.004	<0.004	NA	< 0.004	98%	70%	130%	100%	80%	120%	98%	70%	130%
Dissolved Al & Hg														
Aluminum-dissolved	2217740 2217740	< 0.004	0.005	NA	< 0.004	107%	70%	130%	111%	80%	120%	93%	70%	130%
Dissolved Mercury	2211353	< 0.0001	< 0.0001	NA	< 0.0001	102%	70%	130%	103%	80%	120%	99%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

Certified By:

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 20141301

AGAT WORK ORDER: 21T721685

ATTENTION TO: Joel Gopaul

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	1.0		72.1
Aluminum-dissolved	MET 02 6402	modified from EPA 200.8 and EPA	ICP-MS
Aluminum-dissolved	MET-93-6103	3005A	
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE
Saturation pH (Calculated)		SM 2320 B	CALCULATION
Langelier Index (Calculated)		SM 2330B	CALCULATION
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Hydroxide (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Ortho Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Reactive Silica	INOR-93-6070	QuickChem 10-114-27-1-A & SM 4500 Si-F	LACHAT FIA
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER
Total Organic Carbon	INOR-93-6049	modified from SM 5310 B	SHIMADZU CARBON ANALYZER
True Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER
Total Calcium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Magnesium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Potassium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD. AGAT WORK ORDER: 21T721685
PROJECT: 20141301 ATTENTION TO: Joel Gopaul

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS			

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth_agatlabs_com **Laboratory Use Only**

Work Order #:	217	721	685

Cooler Quantity:			
Arrival Temperatures:	1.7	0.	1.0_
	3.8	13.5	14.)
Custody Seal Intact:	□Yes	/ No	□N/A
Variable Control of the Control of t			

Airrar tomporata.	3.8	3.5	4.)
Custody Seal Intact	res res	1CE	□N/A
Turnaround Ti	me (TAT) i	Required:	
Regular TAT (Mos	t Analysis)	5 to 7 Busines	ss Days
Rush TAT (Rush Surc	harges Apply)		
3 Business Days	☐ 2 Bu		Next Busines Day
OR Date R	equired (Rush	Surcharges May	Apply):
		otification for rush	
V as Della		se contact your A	
O. Reg O Reg 406			

	BTEX, F1-F4 PHCs Analyze F4G if require	PAHS	Total PCBs	VOC	Landfill Disposal Charact	Excess Soils SPLP Rail	Excess Soils Character	Salt - EC/SAR	¥03	dissoved A	dissived Ho			Potentially Hazardous or H
									X					N
										X	X			N
					•				X					N
										X	X		E	N
							= 4		X					N
	, ii	1								X	V		-112	N
					1									
			e d		10								8	
Ī														

Report Information: Company: Contact: Address: Phone: Reports to be sent to:				gulatory Requicheck all applicable boxes, gulation 153/04 Die Indicate One Ind/Com Res/Park Agriculture	Excess Soils Randle Indicate One	,	☑ Prov	er Use nitary Region Water Qu ctives (PW	— ality		Tur Reg	narou gular T	und Ti	ime (ils)	Requ			□N/A
1. Email: 2. Email: Toel_Gopau Agree Bea		.com 5. com		exture (Check One) Coarse Fine this submission		Re	Othe		e on		[Day OR	Date R	Lequire	Day d (Rush	Surch:	arges M	Next B Day lay Apply): rush TAT	Business :
Project: 2014130 i Site Location: 5outh Fergus Sampled By: April Po: Po:				Yes 🗷	No		Yes		No		0. Reg 558	or 'Sam						tory holida ur AGAT C	
Invoice Information: Company: Contact: Address:	eer is not provided, client will be Bi	ne billed full price for analysis.	= В	Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX, F1-F4 PHCs Analyze F4G if required □ Yes □ No		PCBs	Landfill Disposal Characterization TCLP:	Soils SPLP Rainwate] Metals □ vocs □ Sv	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Salt - EC/SAR	W OA		0		illy Hazardous or High Concentration (Y
Sample Identification	Date Sampled	Time # of Containers	Sample Matrix		ments/ nstructions	Y/N	Metals	Metals BTEX, F	PAHs	Total P	Landfill	(6	Excess pH, ICP	Salt - E	3	dis.			Potentia
20-3-F 20-8-5 20-8-5 20-8-5 20-10-5 20-10-5 20-10-5 Pamples Relinquished By (Print Name and Sign): Acres Beard Carples Relinquished By (Print Name and Sign):	12/03/31 earch)	Date . / Time	(GW)	dissolved dissolved dissolved Samples Received By (P	Al, Hg Al, Hg rint Name and Sign):	272727	de	B		Date C3/Date	5/2/	Time	1. 2		N°: T	Page_	60	62	\(\lambda \) \(
scurrent ID: BIV-78-1511.020	8				matris			Pink	Сору -	Client !	Yellow (Copy - A	GAT I V		•	L L	Page	<u> </u>	 1 ^{9, 2620}

CLIENT NAME: GOLDER ASSOCIATES LTD. 100 SCOTIA COURT WHITBY, ON L1N8Y6

(905) 723-2727

ATTENTION TO: Joel Gopaul PROJECT: 20141301

AGAT WORK ORDER: 22T916870

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Jul 28, 2022

PAGES (INCLUDING COVER): 10 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE: South Furgus

Certificate of Analysis

AGAT WORK ORDER: 22T916870

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:AGB

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2022-07-06								DATE REPORTED: 2022-07-28
	S	SAMPLE DES	-	20-4	20-8-S		20-10-S	
			PLE TYPE:	Water 2022-07-05	Water 2022-07-05		Water 2022-07-05	
		DATE	SAMPLED:	13:00	2022-07-05 16:30		2022-07-05 15:00	
Parameter	Unit	G/S	RDL	4057067	4057078	RDL	4057079	
Electrical Conductivity	μS/cm		2	771	645	2	1070	
рН	pH Units	6.5-8.5	NA	7.83	7.87	NA	7.90	
Saturation pH (Calculated)				6.90	6.76		6.85	
Langelier Index (Calculated)				0.926	1.11		1.05	
Hardness (as CaCO3) (Calculated)	mg/L		0.5	314	451	0.5	368	
Total Dissolved Solids	mg/L		10	436	384	10	604	
Alkalinity (as CaCO3)	mg/L		5	288	279	5	300	
Bicarbonate (as CaCO3)	mg/L		5	288	279	5	300	
Carbonate (as CaCO3)	mg/L		5	<5	<5	5	<5	
Hydroxide (as CaCO3)	mg/L		5	<5	<5	5	<5	
Fluoride	mg/L		0.05	< 0.05	<0.05	0.05	< 0.05	
Chloride	mg/L		0.10	65.8	25.5	0.12	162	
Nitrate as N	mg/L		0.05	3.29	0.25	0.05	1.26	
Nitrite as N	mg/L		0.05	< 0.05	<0.05	0.05	<0.05	
Bromide	mg/L		0.05	< 0.05	<0.05	0.05	<0.05	
Sulphate	mg/L		0.10	18.7	40.2	0.10	7.48	
Ortho Phosphate as P	mg/L		0.10	<0.10	<0.10	0.10	<0.10	
Ammonia as N	mg/L		0.02	<0.02	0.02	0.02	<0.02	
Ammonia-Un-ionized (Calculated)	mg/L	0.02	0.000002	< 0.000002	0.000990	0.000002	<0.000002	
Total Phosphorus	mg/L	*	0.02	0.02	0.03	0.02	<0.02	
Total Organic Carbon	mg/L		0.5	1.0	1.4	0.5	1.1	
True Colour	TCU		5.00	<5.00	<5.00	5.00	<5.00	
Turbidity	NTU		0.5	8.9	246	0.5	0.7	
Total Calcium	mg/L		0.20	106	127	0.20	100	
Total Magnesium	mg/L		0.10	11.9	32.4	0.10	28.7	
Total Potassium	mg/L		0.50	<0.50	0.68	0.50	<0.50	
Total Sodium	mg/L		0.10	81.0	4.27	0.10	27.9	
Aluminum-dissolved	mg/L	*	0.004	0.005	0.005	0.004	0.005	
Total Antimony	mg/L	0.020	0.001	<0.001	<0.001	0.001	<0.001	

Certified By:

Yris Verastegui

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE: South Furgus

Certificate of Analysis

AGAT WORK ORDER: 22T916870

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLED BY:AGB

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2022-07-06								DATE REPORTED: 2022-07-28
		SAMPLE DESC	CRIPTION:	20-4	20-8-S		20-10-S	
		SAMF	PLE TYPE:	Water	Water		Water	
		DATE S	SAMPLED:	2022-07-05	2022-07-05		2022-07-05	
				13:00	16:30		15:00	
Parameter	Unit	G/S	RDL	4057067	4057078	RDL	4057079	
Total Arsenic	mg/L	0.1	0.003	<0.003	0.004	0.003	<0.003	
Total Barium	mg/L		0.002	0.024	0.140	0.002	0.029	
Total Beryllium	mg/L	*	0.001	<0.001	<0.001	0.001	<0.001	
Total Boron	mg/L	0.2	0.010	0.048	0.036	0.010	0.041	
Total Cadmium	mg/L	0.0002	0.0001	0.0001	<0.0001	0.0001	<0.0001	
Total Chromium	mg/L		0.003	<0.003	0.006	0.003	< 0.003	
Total Cobalt	mg/L	0.0009	0.0005	< 0.0005	0.0020	0.0005	< 0.0005	
Total Copper	mg/L	0.005	0.001	0.001	0.006	0.001	0.001	
Total Iron	mg/L	0.3	0.010	<0.010	4.27	0.010	0.410	
Total Lead	mg/L	*	0.001	<0.001	0.005	0.001	<0.001	
Total Manganese	mg/L		0.002	< 0.002	0.232	0.002	0.015	
Dissolved Mercury	mg/L	0.0002	0.0001	< 0.0001	< 0.0001	0.0001	<0.0001	
Total Molybdenum	mg/L	0.040	0.002	< 0.002	<0.002	0.002	<0.002	
Total Nickel	mg/L	0.025	0.003	< 0.003	0.003	0.003	< 0.003	
Total Selenium	mg/L	0.1	0.002	< 0.002	0.002	0.002	<0.002	
Total Silver	mg/L	0.0001	0.0001	0.0001	<0.0001	0.0001	<0.0001	
Total Strontium	mg/L		0.005	0.332	0.228	0.005	0.146	
Total Thallium	mg/L	0.0003	0.0003	< 0.0003	< 0.0003	0.0003	< 0.0003	
Total Tin	mg/L		0.002	< 0.002	<0.002	0.002	<0.002	
Total Titanium	mg/L		0.010	<0.010	0.129	0.010	0.021	
Total Tungsten	mg/L	0.030	0.010	<0.010	<0.010	0.010	<0.010	
Fotal Uranium	mg/L	0.005	0.002	<0.002	< 0.002	0.002	<0.002	
Total Vanadium	mg/L	0.006	0.002	< 0.002	0.007	0.002	<0.002	
Total Zinc	mg/L	0.030	0.020	<0.020	0.060	0.020	<0.020	
Total Zirconium	mg/L	0.004	0.004	< 0.004	<0.004	0.004	<0.004	
Lab Filtration Aluminum Dissolved	.			2022/7/7	2022/7/7		2022/7/7	

Certified By:

Tris Verastegui

Certificate of Analysis

AGAT WORK ORDER: 22T916870

PROJECT: 20141301

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

SAMPLING SITE: South Furgus

ATTENTION TO: Joel Gopaul SAMPLED BY:AGB

Water Quality Assessment - PWQO (mg/L)

DATE RECEIVED: 2022-07-06 DATE REPORTED: 2022-07-28

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO * Variable - refer to guideline reference document

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4057067-4057079 Diss.Al analysis completed on a lab filtered sample.

Dilution required, RDL has been increased accordingly.
Un-ionized Ammonia detection limit is a calculated RDL. The calculation of Un-ionized Ammonia is based on lab measured parameters (ammonia as N, pH and temperature). Values are reported as

calculated.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

Exceedance Summary

AGAT WORK ORDER: 22T916870

PROJECT: 20141301

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GOLDER ASSOCIATES LTD.

ATTENTION TO: Joel Gopaul

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4057078	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Cobalt	mg/L	0.0009	0.0020
4057078	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Copper	mg/L	0.005	0.006
4057078	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	4.27
4057078	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Vanadium	mg/L	0.006	0.007
4057078	20-8-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Zinc	mg/L	0.030	0.060
4057079	20-10-S	ON PWQO	Water Quality Assessment - PWQO (mg/L)	Total Iron	mg/L	0.3	0.410

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 20141301

AGAT WORK ORDER: 22T916870

ATTENTION TO: Joel Gopaul

SAMPLING SITE:South Furgus SAMPLED BY:AGB

			Wate	er Ar	nalys	is								
RPT Date: Jul 28, 2022			DUPLICATE	<u> </u>		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Liı	eptable mits	Recovery	Lir	ptable nits	Recovery	Lir	ptable nits
N/	NOO (/L)						Lower	Upper		Lower	Upper		Lower	Uppei
Water Quality Assessment - P\	, ,	126	133	2.2%	. 0	104%	90%	1100/						
Electrical Conductivity pH	4056352 4056352	136 6.93	6.89	0.6%	< 2 NA	104%	90%	110% 110%						
Total Dissolved Solids	4056343	74	74	0.0%	< 10	96%	80%	120%						
Alkalinity (as CaCO3)	4056352	24	21	0.0% NA	< 10 < 5	90%	80%	120%						
Bicarbonate (as CaCO3)	4056352	24	21	NA	< 5	NA	0070	12070						
Carbonate (as CaCO3)	4056352	<5	<5	NA	< 5	NA								
Hydroxide (as CaCO3)	4056352	<5	<5	NA	< 5	NA								
Fluoride	4054678	< 0.05	< 0.05	NA	< 0.05	104%	70%	130%	108%	80%	120%	101%	70%	130%
Chloride	4054678	126	125	0.8%	< 0.10	101%	70%	130%	103%	80%	120%	NA	70%	130%
Nitrate as N	4054678	0.34	0.33	3.0%	< 0.05	97%	70%	130%	101%	80%	120%	100%	70%	130%
Nitrite as N	4054678	<0.05	<0.05	NA	< 0.05	93%	70%	130%	105%	80%	120%	102%	70%	130%
Bromide	4054678	< 0.05	< 0.05	NA	< 0.05	110%	70%	130%	100%	80%	120%	101%	70%	130%
Sulphate	4054678	100	100	0.0%	< 0.10	99%	70%	130%	101%	80%	120%	98%	70%	130%
Ortho Phosphate as P	4054678	<0.10	<0.10	NA	< 0.10	91%	70%	130%	104%	80%	120%	99%	70%	130%
Ammonia as N	4055609	0.16	0.16	0.0%	< 0.02	106%	70%	130%	102%	80%	120%	94%	70%	130%
Total Phosphorus	4060901	0.20	0.19	5.1%	< 0.02	99%	70%	130%	98%	80%	120%	NA	70%	130%
Total Organic Carbon	4057785	2.3	2.3	NA	< 0.5	99%	90%	110%	93%	90%	110%	89%	80%	120%
True Colour	4057785	115	110	4.4%	< 5	104%	90%	110%						
Turbidity	4055797	258	262	1.5%	< 0.5	102%	80%	120%						
Total Calcium	4061728	253	268	5.8%	< 0.20	106%	70%	130%	104%	80%	120%	92%	70%	130%
Total Magnesium	4061728	54.6	49.4	10.0%	< 0.10	99%	70%	130%	97%	80%	120%	87%	70%	130%
Total Potassium	4061728	46.1	50.0	8.1%	< 0.50	98%	70%	130%	96%	80%	120%	71%	70%	130%
Total Sodium	4061728	2100	2410	13.7%	< 0.10	104%	70%	130%	95%	80%	120%	NA	70%	130%
Aluminum-dissolved	4057067 4057067	0.005	0.005	NA	< 0.004	108%	70%	130%	103%	80%	120%	108%	70%	130%
Total Antimony	4061728	<0.001	<0.001	NA	< 0.001	99%	70%	130%	95%	80%	120%	100%	70%	130%
Total Arsenic	4061728	0.003	0.005	NA	< 0.003	93%	70%	130%	91%	80%	120%	91%	70%	130%
Total Barium	4061728	0.048	0.051	6.1%	< 0.002	100%	70%	130%	97%	80%	120%	104%	70%	130%
Total Beryllium	4061728	<0.001	<0.001	NA	< 0.001	100%	70%	130%	87%	80%	120%	78%	70%	130%
Total Boron	4061728	2.41	2.58	6.8%	< 0.010	100%	70%	130%	94%	80%	120%	84%	70%	130%
Total Cadmium	4061728	<0.0001	<0.0001	NA	< 0.0001	l 99%	70%	130%	94%	80%	120%	89%	70%	130%
Total Chromium	4061728	0.005	0.005	NA	< 0.003	103%		130%	102%	80%	120%	102%		130%
Total Cobalt	4061728	0.0020	0.0022	NA	< 0.0005		70%	130%	93%	80%	120%	99%		
Total Copper	4061728	0.015	0.016	6.5%	< 0.001		70%		99%	80%	120%	87%		130%
Total Iron	4061728	5.12	5.94	14.8%	< 0.010		70%		101%	80%	120%	102%		130%
Total Lead	4061728	0.002	0.002	NA	< 0.001	100%	70%	130%	93%	80%	120%	87%	70%	130%
Total Manganese	4061728	0.543	0.556	2.4%	< 0.002			130%	93%		120%	89%		130%
Dissolved Mercury	4057067 4057067	<0.0001	<0.0001	NA	< 0.0001		70%		100%	80%	120%	98%		130%
Total Molybdenum	4061728	<0.002	< 0.002	NA	< 0.002		70%	130%	101%	80%	120%	106%	70%	130%
Total Nickel	4061728	0.003	0.003	NA	< 0.003	101%	70%	130%	89%	80%	120%	91%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 10

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: GOLDER ASSOCIATES LTD.

AGAT WORK ORDER: 22T916870

PROJECT: 20141301

ATTENTION TO: Joel Gopaul

SAMPLING SITE:South Furgus SAMPLED BY:AGB

Water Analysis (Continued)															
RPT Date: Jul 28, 2022			DUPLICATE			<u> </u>	REFERENCE MATERIAL			METHOD	BLAN	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #1 Dup #2 RP	RPD	Method Blank	Measured	Acceptable Limits		Recovery	1 1 1 1 1	ptable nits	Recovery	1 1 1 1	ptable nits
		ld					Value	Lower	Upper		Lower	Upper]	Lower	Upper
Total Selenium	4061728		0.036	0.032	11.8%	< 0.002	101%	70%	130%	88%	80%	120%	87%	70%	130%
Total Silver	4061728		0.0006	0.0005	18.2%	< 0.0001	100%	70%	130%	87%	80%	120%	86%	70%	130%
Total Strontium	4061728		10.2	10.8	5.7%	< 0.005	104%	70%	130%	94%	80%	120%	74%	70%	130%
Total Thallium	4061728		<0.0003	< 0.0003	NA	< 0.0003	107%	70%	130%	96%	80%	120%	87%	70%	130%
Total Tin	4061728		< 0.002	< 0.002	NA	< 0.002	104%	70%	130%	99%	80%	120%	101%	70%	130%
Total Titanium	4061728		0.013	0.020	NA	< 0.010	109%	70%	130%	92%	80%	120%	119%	70%	130%
Total Tungsten	4061728		<0.010	<0.010	NA	< 0.010	101%	70%	130%	98%	80%	120%	103%	70%	130%
Total Uranium	4061728		< 0.002	< 0.002	NA	< 0.002	96%	70%	130%	93%	80%	120%	96%	70%	130%
Total Vanadium	4061728		0.004	0.005	NA	< 0.002	103%	70%	130%	94%	80%	120%	104%	70%	130%
Total Zinc	4061728		0.023	0.022	NA	< 0.020	99%	70%	130%	97%	80%	120%	92%	70%	130%
Total Zirconium	4061728		< 0.004	< 0.004	NA	< 0.004	98%	70%	130%	100%	80%	120%	101%	70%	130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

Certified By:

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD.

PROJECT: 20141301

SAMPLING SITE:South Furgus

AGAT WORK ORDER: 22T916870

ATTENTION TO: Joel Gopaul

SAMPLED BY:AGB

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Electrical Conductivity	INOR-93-6000	modified from SM 2510 B	PC TITRATE						
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE						
Saturation pH (Calculated)		SM 2320 B	CALCULATION						
Langelier Index (Calculated)		SM 2330B	CALCULATION						
Hardness (as CaCO3) (Calculated)	MET-93-6105	modified from EPA SW-846 6010C & 200.7 & SM 2340 B	CALCULATION						
Total Dissolved Solids	INOR-93-6028	modified from EPA 1684,ON MOECC E3139,SM 2540C,D	BALANCE						
Alkalinity (as CaCO3)	INOR-93-6000	Modified from SM 2320 B	PC TITRATE						
Bicarbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE						
Carbonate (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE						
Hydroxide (as CaCO3)	INOR-93-6000	modified from SM 2320 B	PC TITRATE						
Fluoride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Nitrate as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Nitrite as N	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Bromide	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Sulphate	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Ortho Phosphate as P	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Ammonia as N	INOR-93-6059	modified from SM 4500-NH3 H	LACHAT FIA						
Ammonia-Un-ionized (Calculated)		MOE REFERENCE, PWQOs Tab 2	CALCULATION						
Total Phosphorus	INOR-93-6022	modified from SM 4500-P B and SM 4500-P E	SPECTROPHOTOMETER						
Total Organic Carbon	INOR-93-6049	modified from SM 5310 B	SHIMADZU CARBON ANALYZER						
True Colour	INOR-93-6074	modified from SM 2120 B	LACHAT FIA						
Turbidity	INOR-93-6044	modified from SM 2130 B	NEPHELOMETER						
Total Calcium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS						
Total Magnesium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS						
Total Potassium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS						
Total Sodium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP/MS						
Aluminum-dissolved	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Total Antimony	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Arsenic	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Barium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Beryllium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Boron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Cadmium	MET -93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Chromium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Cobalt	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						

Method Summary

CLIENT NAME: GOLDER ASSOCIATES LTD. AGAT WORK ORDER: 22T916870 PROJECT: 20141301 ATTENTION TO: Joel Gopaul

SAMPLING SITE:South Furgus SAMPLED BY:AGB

Ortivii Eirio Ori E. Oodiii i digas		O/ (IVII EED D1://							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Total Copper	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Iron	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Lead	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Manganese	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Dissolved Mercury	MET-93-6100	modified from EPA 245.2 and SM 311 B	¹² CVAAS						
Total Molybdenum	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Nickel	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Selenium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Silver	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Strontium	INOR-93-6003	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Thallium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Tin	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Titanium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Tungsten	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Uranium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Vanadium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Zinc	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Total Zirconium	MET-93-6103	modified from EPA 200.8, 3005A, 3010A & 6020B	ICP-MS						
Lab Filtration Aluminum Dissolved	SR-78-9001		FILTRATION						

5835 Coopers Avenue

Laboratory Use Only Work Order #: 22 T9168 70 Mississauga, Ontario L4Z 1Y2

Chain of Custody Reco			OOTA			of Custody Form (pot	able water o	W	ebeart	h agat	12 512 labs.com			Quantity Tempera		1	10	7	50	17-	<u></u>
Report Information: Company: Contact: Golder Gopaul				(Please	Regulatory Requirements: (Please check all applicable baxes) Regulation 153/04 Excess Soils R406 Sewer Use							Custody Soul Intact: Tyes No No N/A Notes: Sagged / Ce									
Address: /oo Scotta Crt				_	Regulation 153/04 Table	Table Indicate 0	ne	Sewer Use Sanitary Storm Region Prov. Water Quality Objectives (PWOO)					Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)								
1. Email: 2. Email: Totl-Gopaulle golds com Aver-Brad egolds com					exture (Check One) Coarse Fine	ССМЕ		Other Indicate One			OR Date Required (Rush Surcharges May Apply):								ısiness		
Project Information: Project: 20141301 Site Location: 56444 F-5445 Sampled By:				Red	Is this submission for a Record of Site Condition? Tyes No				Report Guideline on Certificate of Analysis X Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM							
AGAT Quote #: Please note: If quotation number Invoice Information: Company: Contact: Address:	ј шти В	ill To Same: Ye	s No 🗆	В	pple Matrix Le Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Thereof Metals He Grvl, DOC	& Inorganics	Reg 1:				sal Characterization TCLP:	SPLP Rainwater Leach	cterizat	Moist	3.	ved Al	wed Hy	Total	irdous or High Concentration (Y/N)
Sample Identification	Date	Time Sampled	# of Containers	Sample Matrix	Com	nments/	N/A Field Filte	Metals & Inc	Metals - □ C	BTEX, F1-F4 PHCs	PCBs	Voc	Aroclors Landfill Disposal	Excess Soils:	Excess Soils Chara	orrosivity: Ir	NQ A	4.55ch	Lissein		otentially Haz
20-4	Sampled 85/3/21	/3:00 AM		Gw		Instructions In Ha	Y	2	2	m	1 4	>	4 J i	шо	ш с		X	×	X		
20-4. 20-85 20-105	05/07/12	130 AM	10	GW	41	11	y							lia N			X	X	X	neri N	
		AM PM AM PM												(A)					II-gii	otyy	
11-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		AM PM AM PM	- U-I	A GOLIGIA	2-10-2-1	Street Hotel		100						00				anoi		1(01)	10
	B. V. T. PHILE	AM PM AM PM AM PM			I BOTH																
		FIVI			U-51-2							1		1							

Samples Relinquished By (Print Name and Sign): 7:00 Samples Relinquished By (Print Name and Sign): Samples Received By (Print Name and Sign):

