

961 St. David Street North, Fergus

Preliminary Hydrogeological Investigation

Project Location: 961 St. David Street North, Fergus, ON

Prepared for: RE/Max Real Estate Centre Inc. 766 Hespeler Road Cambridge, ON N3H 5L8

Prepared by: MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

December 6, 2023

MTE File No.: 48650-400

Engineers, Scientists, Surveyors.

Contents

1.0	Intro	oduction	1
1.1	S	cope and Methodology	1
1.	.1.1	Background Review	1
1.	.1.2	Field Investigation	1
1.	.1.3	Preliminary Analysis and Reporting	1
1.	.1.4	Ongoing Monitoring and Report Update	2
2.0	Site	Description	2
3.0	Fiel	d Program	2
3.1	В	orehole Advancement and Monitoring Well Construction	2
3.2		Ionitoring Well Development	
3.3	G	Groundwater Levels	2
3.4		broundwater Quality	
4.0	Reg	gional Geology and Hydrogeology	3
4.1	Ρ	hysiography	3
4.2	C	uaternary Geology	3
4.3	Ρ	aleozoic Geology	3
4.4	R	egional Groundwater Flow	3
4.5	V	Vater Well Record Search	4
4.6	S	ource Water Protection	4
5.0		al Hydrogeological Setting	
5.1	G	eological Cross-Section	4
5.2	G	Froundwater Elevations and Flow Direction	5
5.3	Н	lydraulic Conductivity	5
5.	.3.1	In-Situ Hydraulic Conductivity Testing	5
5.	.3.2	Grain Size Analyses	5
5.	.3.3	Hydraulic Conductivity Results	5
5.4	A	verage Linear Groundwater Velocity	5
5.5	G	Groundwater Quality	6
6.0	Pre	liminary Design Considerations	6
6.1	D	ewatering	6
7.0	Cor	nclusions and Recommendations	6
8.0	Lim	itations	7
9.0	Ref	erences	8

Figures

- Figure 1 Site Location Map
- Figure 2 Site Layout and Sampling Locations
- Figure 3 Physiographic Landforms
- Figure 4 Quaternary Geology
- Figure 5 Source Water Protection Areas
- Figure 6 Geological Cross-Section A-A'
- Figure 7 Interpreted Groundwater Flow Map

Tables

- Table 1
 Manual Groundwater Measurements
- Table 2
 MECP Water Well Record Summary
- Table 3Hydraulic Conductivity Summary
- Table 4Groundwater Analytical Results

Appendices

- Appendix A Site Concept Plan
- Appendix B Borehole Logs
- Appendix C Hydrographs
- Appendix D AquiferTest Results
- Appendix E Particle Size Distribution and Hydraulic Conductivity Estimates
- Appendix F Laboratory Certificates of Analysis

1.0 Introduction

MTE Consultants Inc. (MTE) was retained by RE/MAX Real Estate Centre Inc. to conduct a Preliminary Hydrogeological Investigation for a proposed development at 961 St. David Street North, Fergus, Ontario (herein referred to as the "Site"). **Figure 1** illustrates the Site location.

The Site is currently vacant and consists of an abandoned dwelling, a detached structure and a grassed field. The proposed development consists of 50 residential units with associated parking, and new roadway to access the development. The Site will be municipally serviced for water supply, wastewater, and stormwater.

- 1.1 Scope and Methodology
- 1.1.1 Background Review
 - Topography, physiography, geological and hydrogeological mapping on file with the Community of Fergus, Grand River Conservation Authority, the Ontario Geological Survey, and the Ministry of Natural Resources and Forestry (MNRF).
 - Available nearby well records on file with the Ministry of the Environment, Conservation and Parks (MECP).

1.1.2 Field Investigation

- Development of three monitoring wells installed during the concurrent geotechnical investigation.
- Collection of stabilized water levels from newly constructed monitoring wells.
- In-situ single well hydraulic response testing (slug testing) of select representative monitoring wells to determine the hydraulic conductivity of the saturated soils on-site.
- Collection of two groundwater samples from select monitoring locations for analysis of a suite of water quality parameters to assess pre-development water quality conditions.
- Installation of electronic data loggers to monitor groundwater on a continuous basis in select newly constructed monitoring wells.

1.1.3 Preliminary Analysis and Reporting

Summarize findings in a letter report to be reviewed and signed by a Professional Geoscientist or Engineer licensed to practice in Ontario. The report will address the following items:

- The topography, physiography, and geology of the subsurface soils.
- A hydrogeological characterization of the Site including groundwater levels, gradients, flow direction, and hydraulic conductivity.
- Preliminary assessment of groundwater quality.
- Summary of identified groundwater receptors and discussion of the potential for the proposed development to impact these receptors.
- Generation of one geologic cross-section showing the encountered subsurface conditions and any available design details.
- Descriptions of the regional setting, encountered stratigraphy and groundwater conditions, including any observed seeps.
- Recommendations for additional work, groundwater monitoring and/or mitigation, as appropriate.

1.1.4 Ongoing Monitoring and Report Update

This Preliminary Hydrogeological Investigation Report is based on data collected at the time of the field investigation and includes water levels that represent a limited duration of time. To support final design, an addendum to this report will be prepared that will include a longer monitoring time period, which will also evaluate the seasonal high groundwater level based on continuous monitoring of groundwater levels at the Site.

2.0 Site Description

The Site is approximately 1.4 hectares (3.5 acres) in size, currently vacant consisting of an abandoned dwelling, a detached structure and a grassed field. The Site is bordered by St. David Street North (Highway 6) to the east, adjacent residential properties to the south and west, and a commercial property to the north. The ground surface at the Site generally slopes down from the east to the west. Ground surface elevations measured at the borehole locations range from Elevation 424.4 to 423.1m above mean sea level (amsl). The Site features are shown on **Figure 2**.

A Land Use Plan for the proposed development is provided in **Appendix A**. The plan includes 50 residential units with associated parking and a new roadway to access the development.

3.0 Field Program

3.1 Borehole Advancement and Monitoring Well Construction

In conjunction with the Geotechnical investigation, boreholes were advanced and monitoring wells installed at three locations across the Site. On June 27, 2023, London Soil Test Ltd. used a track-mounted CME75 drill rig to complete the advancement and installation of monitoring wells MW101-23, MW102-23, and MW104-23. Boreholes and monitoring wells were advanced to depths ranging from 5.0m to 6.7m below ground surface (bgs).

The monitoring wells at the Site were surveyed by MTE to a geodetic benchmark. Borehole and monitoring well locations are illustrated on **Figure 2**. Borehole logs are provided in **Appendix B**.

3.2 Monitoring Well Development

The monitoring wells were developed on July 26 and August 16, 2023, using Waterra[™] Surge Blocks to remove any accumulated sediments from the bottom of the well and to remove fine grained materials from the well screen and sand pack. Monitoring well development was deemed complete once a minimum of three well volumes of water was removed, and the water was observed to be silt-free. Monitoring well development was completed prior to the installation of the data loggers.

3.3 Groundwater Levels

Manual groundwater levels were collected from the monitoring wells on four occasions between July 26 and October 11, 2023, to allow for the interpretation of shallow groundwater flow directions. Manually measured groundwater levels and elevations within the monitoring wells are presented in **Table 1**. In addition, data loggers were installed in each of the three monitoring wells. Data loggers measure the pressure of water (in cm) above the logger, which can then be compensated for atmospheric pressure to determine a groundwater level. The continuous hourly groundwater level information collected by the data loggers allows for an assessment of seasonal groundwater trends and responses to precipitation events.

Hydrographs 1 to **3** (**Appendix C**) present groundwater elevation information from the data loggers installed within monitoring wells MW101-23, MW102-23 and MW104-23. Precipitation data (Environment Canada Fergus Shand Dam Station) is also presented on the hydrographs to illustrate the relationship between the shallow groundwater table and precipitation events.

3.4 Groundwater Quality

Two monitoring wells were sampled on July 26, 2023, and submitted to ALS Environmental Laboratories (ALS) in Waterloo, Ontario for analysis of general chemistry parameters including total metals, nutrients and petroleum hydrocarbons (PHCs). Prior to collecting groundwater samples, the monitoring wells were purged to obtain a groundwater sample representative of the surrounding formation. Groundwater samples were collected after approximately three well volumes had been removed.

4.0 Regional Geology and Hydrogeology

4.1 Physiography

The Site is located within the broad physiographic region known as the Guelph Drumlin Field. The Guelph Drumlin Field occupies an approximate area of 830km² and contains drumlins that are generally broad and oval in shape. The drumlins mainly consist of loamy and calcareous till derived from the dolostone of the Amabel Formation. Within this physiographic region the overburden materials encountered are stony tills which are sand rich based on grain sizes (Chapman and Putnam, 1984).

The Site is located in the physiographic landform known as till plains (drumlinized). The physiographic landforms are presented on **Figure 3** (Chapman and Putnam, 1984).

4.2 Quaternary Geology

Quaternary geology mapping (**Figure 4**) indicates that the surficial geology beneath the Site is mapped as sandy glaciofluvial deposits within the Port Stanley Till. The Port Stanley Till is described as a silt to sandy silt matrix becoming silt to silty clay near Lake Erie. (*Ontario Geologic Survey*, 2010).

4.3 Paleozoic Geology

The Site is underlain by the Upper Silurian dolomite of the Guelph Formation. The Guelph formation is described as tan to brown, fine- to medium-crystalline, fossiliferous, dolostone that is locally biohermal (Armstrong and Carter, 2010). Bedrock was not encountered during the drilling program.

Based on water well records in the area, the bedrock surface is expected to be encountered at depths of approximately 27m to 76m bgs.

4.4 Regional Groundwater Flow

Regional shallow groundwater elevations, provided by the Grand River Conservation Authority (GRCA) (published 2009), indicate that the regional shallow groundwater elevations in the vicinity of the Site range from approximately 423 to 425m amsl. In addition, the regional shallow groundwater flow direction is indicated as southerly towards the Grand River, located approximately 2km southeast of the Site.

4.5 Water Well Record Search

Hydrogeological data related to private water supply wells within 250m of the Subject Lands were obtained from water well records on-file with the Ministry of the Environment, Conservation and Parks (MECP). A total of 74 water well records were located within 250m of the Site. Of the 74 water well records, the following primary use was listed on the water well record:

- 26 water supply wells;
- 28 monitoring/observation wells or test holes;
- 13 abandonment records; and
- Seven records with no use specified.

MECP water well records are summarized in **Table 2**. Based on the available water well records, there are private water supply wells within the Study Area that are used for Domestic and Municipal water supply. According to the water well records, the majority of these wells are completed into the underlying bedrock.

4.6 Source Water Protection

The closest municipal well to the Site is Fergus Well 7 (F7), located approximately 900m southwest of the Site. This municipal well is completed into the deep bedrock aquifer and is approximately 139m deep. The western portion of the Site is located in Wellhead Protection Area (WHPA) B which is the two to five-year time of travel capture zone (**Figure 5**), with a vulnerability score of 8. The eastern portion of the Site is located in WHPA C. The Site is also located within a mapped Significant Groundwater Recharge Area (SGRA).

5.0 Local Hydrogeological Setting

5.1 Geological Cross-Section

Boreholes and monitoring wells installed for this investigation were used to interpret local hydrostratigraphic units and generate one geological cross-section. The location of the cross-section is provided on **Figure 2**; the geological cross-section is presented in **Figure 6**.

Geological Cross-Section A-A' (Figure 6):

- Extends approximately 190m from southwest to northeast.
- Illustrates sloping topography from approximately 424 to 423 m amsl towards the southwest.
- Shows the Site is underlain by sand deposits, consisting of sand with some silt, extending to the depth of investigation in the vicinity of MW101-23 and BH103-23.
- Shows the sand deposits as being underlain by a silt deposit extending to the depth of investigation in the vicinity of MW102-23 and MW104-23.
- Interprets the shallow groundwater table at the Site at approximately 421m amsl.

The stratigraphy consists of a surficial layer of topsoil with sand with some silt, with silt deposits, consistent with the Port Stanley Till, in the vicinity of MW102-23 and MW104-23. Bedrock was not encountered in the boreholes to the depths explored (up to 6.7 m bgl).

4

5.2 Groundwater Elevations and Flow Direction

Groundwater flow mapping was created for the Site using the September 12, 2023, groundwater levels. Shallow groundwater elevation contours and flow patterns are illustrated in **Figure 7**. The water table at the Site is shown to flow towards the south, generally following the regional groundwater flow towards the Grand River, ranging from an approximate high of 421.6m amsl to a low of 421.1m amsl on September 12, 2023.

5.3 Hydraulic Conductivity

5.3.1 In-Situ Hydraulic Conductivity Testing

MTE conducted single well hydraulic response tests (SWRT) on two monitoring wells (MW101-23 and MW102-23) in August 2023. SWRTs typically involve the rapid introduction and/or removal of a slug of known displacement to raise and/or lower the water level in a well. The response of this rapid change is measured over time and used to calculate hydraulic conductivity. In wells with very low hydraulic conductivity, the response to the introduction of solid slug occurs very slowly.

Groundwater levels were monitored using a data logger programmed to collect a water level approximately every 0.5 second. Where possible, response tests were carried out multiple times using solid slugs of different displacements to assess the viability of assumptions underlying slug test analysis methods.

A representative test from each well was analyzed using the Bouwer and Rice methodology using AquiferTest© Pro Software (Waterloo Hydrogeologic Inc., 2020). A copy of the AquiferTest© data sheets are presented in **Appendix D**.

5.3.2 Grain Size Analyses

Selected soil samples obtained during drilling activities were submitted for gradation and hydrometer analysis, as part of the geotechnical investigation. Particle size distribution reports are provided in **Appendix E**.

5.3.3 Hydraulic Conductivity Results

Based on review of the borehole logs and grain size analyses, sediment types generally range from sand to sandy silt. Altogether, three samples were analyzed with the results summarized in **Table 3**. The hydraulic conductivities of the tested soils across the Site ranges from 1.5x10⁻⁴m/sec to 4.9x10⁻⁶m/sec. These results are consistent with average published values for sand and silty sand soils (Freeze and Cherry, 1979).

The hydraulic conductivity results from the in-situ hydraulic response tests completed at MW101-23 and MW102-23 ranged from 3.1x10⁻⁵m/sec to 1.3x10⁻⁵m/sec, with the estimated geometric hydraulic conductivity value from SWRTs being 2.0x10⁻⁵m/sec.

5.4 Average Linear Groundwater Velocity

The horizontal hydraulic gradient, based on the September 12, 2023, groundwater elevations, is calculated to be 0.008 m/m across the Site.

The average linear groundwater velocity can be calculated using Darcy's Law, as follows:

$$q = (Ki)/n_e$$

Where:

- q = average linear groundwater velocity (m/s)
- K = hydraulic conductivity (2.0 x 10^{-5} m/s (in-situ geometric mean))
- i = horizontal hydraulic gradient (0.008 m/m)

 n_e = effective sediment porosity (0.30 based on published values for sandy soils)

Using the above values, the average linear groundwater velocity at the Site is estimated at approximately 17 m/year ($5x10^{-7}$ m/s).

5.5 Groundwater Quality

The groundwater samples were analyzed for general chemistry parameters. Analytical results have been compared to the Provincial Water Quality Objectives (PWQO), as reference, and are presented in the appended **Table 4**. Unabbreviated laboratory certificates of analysis are presented in **Appendix F**.

6.0 Preliminary Design Considerations

6.1 Dewatering

The shallowest elevation to water measured by MTE in on-Site monitoring wells to date is 421.81m amsl (2.5m bgs). The current concept plan for the Site includes one level of basement beneath each of the residential units with proposed basement finished floor elevations (BFFEs) ranging between 421.94m amsl to 422.71m amsl. Based on the current concept plan and the highest measured groundwater elevation, groundwater is anticipated within 0.2m of the BFFE, as such some dewatering of groundwater may be required for the installation of services or building foundations. Groundwater levels at the Site will continue to be monitored to confirm this conclusion.

7.0 Conclusions and Recommendations

Based on this hydrogeological investigation, MTE offers the following findings:

- The stratigraphy consists of a surficial layer of topsoil above sand and sandy silt deposits, consistent with the Port Stanley Till. Bedrock was not encountered in the boreholes to the depths explored.
- The shallow groundwater flow direction beneath the Site is interpreted to be southerly at elevations of 421.6 to 421.1m amsl.
- Estimate of the horizontal hydraulic gradient of the groundwater table beneath the Site was approximately 0.008.
- Hydraulic conductivity of the water table zone is estimated to range from 3.1x10⁻⁵ m/sec to 1.3x10⁻⁵ m/sec with a geometric mean of 2.0x10⁻⁵ m/sec.
- Based on the plan for one level of underground basement construction, dewatering may be required for the installation of services or building foundations. at the Site.

Recommendations

- Continuous groundwater monitoring should be ongoing and utilized during the site plan approval process, as well as during final design.
- During the development application process, existing on-site groundwater monitoring wells should be maintained.
- Upon monitoring well decommissioning, monitoring wells will need to be decommissioned in accordance with Ontario Regulation 903 (as amended).

8.0 Limitations

Services performed by **MTE Consultants Inc.** (MTE) were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering & Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This report was completed for the sole use of MTE and the Client. The assignment was carried out in accordance with the Scope of Work described in Section 1.1 as reviewed with and agreed to by the Client. MTE makes no representation that the present report has dealt with all of the important environmental issues, except as provided in the Scope of Work. This report is not intended to be exhaustive in scope or to imply a risk-free facility. As such, this report may not deal with <u>all</u> issues potentially applicable to the Site and may omit aspects which are or may be of interest to the reader.

In addition, it should be recognized that a soil sample or groundwater level measurement represents one discrete portion of the Site at the time it is collected, and that the findings of this report are based on conditions as they existed during the time period of the investigation.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties. MTE accepts no responsibility for liabilities incurred by or damages, if any, suffered by another party as a result of decisions made or actions taken, based upon this report. Others with interest in the Site should undertake their own investigations and studies to determine how or if the condition affects them or their plans.

It should be recognized that the passage of time may affect the views, conclusions and recommendations (if any) provided in this report because environmental conditions of a property can change, along with regulatory requirements. Should additional or new information become available, MTE recommends that it be brought to our attention in order that we may determine whether it affects the contents of this report.

All of which is respectfully submitted,

MTE Consultants Inc.

Kyle Reed, P.Geo. Hydrogeologist 519-743-6500 ext. 1380 kreed@mte85.com

PETER A. GRAY PRACTISING MEMBER 0335

Peter A. Gray, P.Geo., QP_{ESA}, FGC VP., Senior Hydrogeologist 519-743-6500 ext. 1306 pgray@mte85.com

KNR:smk

M:\48650\400\02 - Reports\HydroG\48650-400_2023-12-06_rpt_Prelim Hydrogeological Investigation - 961 St. David St N.docx

9.0 References

Armstrong, D.K. and Carter, T.R. (2010). *The subsurface Paleozoic stratigraphy of southern Ontario:* Ontario Geological Survey, Special Volume 7, 301 p.

Chapman, L. J., and Putman, D.F. (1984); *The Physiography of Southern Ontario, Third Edition.* Ontario Geological Survey, Special Volume 2, 270p.

Chapman, L.J., and Putman, D.F. (2007); *Physiography of Southern Ontario*, Ontario Geological Survey, Miscellaneous Release – Data 228.

Freeze, R.A. and Cherry, J.A. (1979). *Groundwater;* Prentice-Hall Inc. Englewood Cliffs, New Jersey;

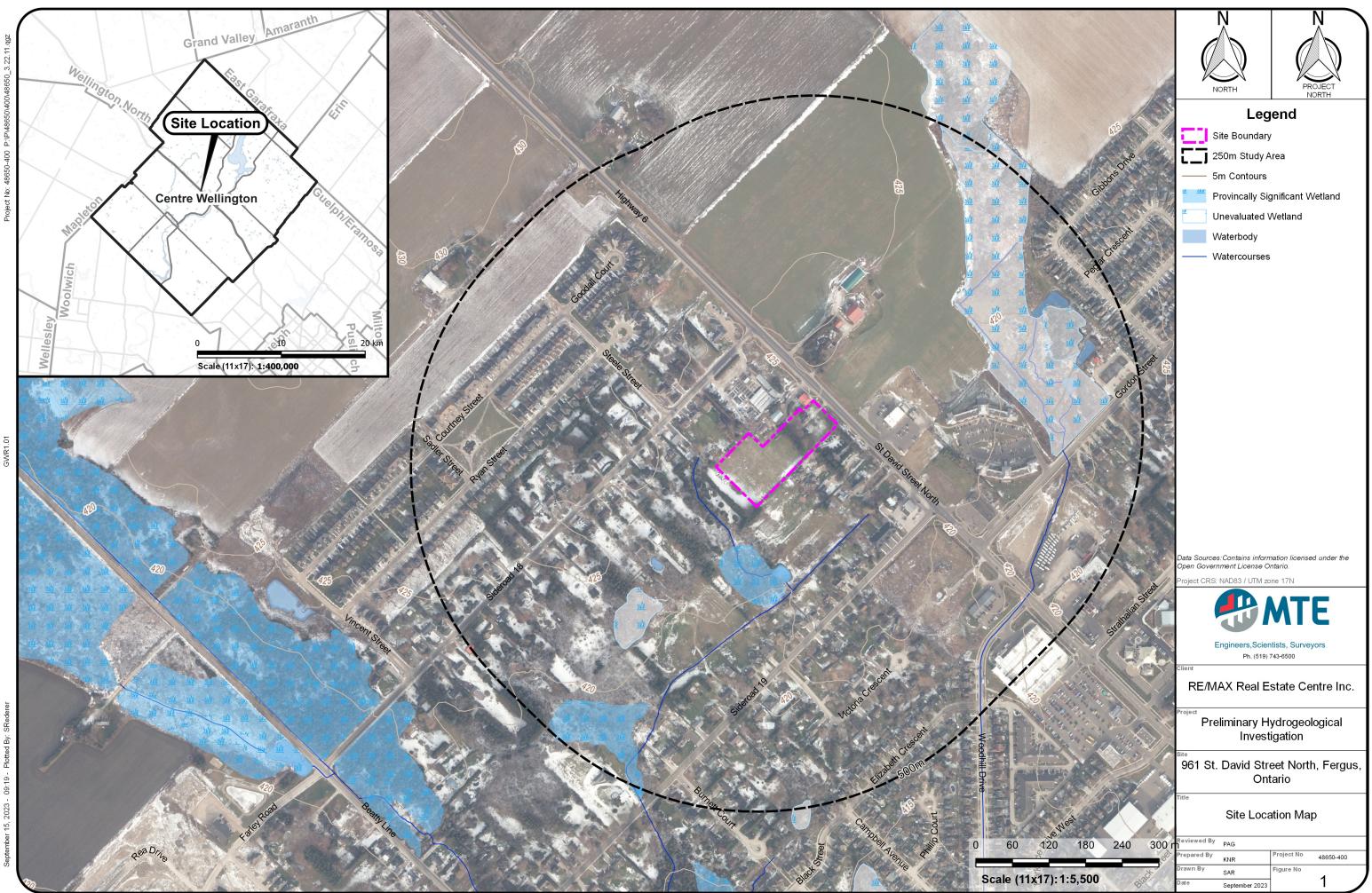
Grand River Conservation Authority. (2018). Grand River Information Network: MNDM Paleozoic Geology.

Karrow, P.F., (1987): *Quaternary Geology of the Hamilton-Cambridge Area*. Ontario Geological Survey. Report 255, 95p.

Karrow, P.F., (1993): *Quaternary Geology, Stratford-Conestoga Area*. Ontario Geological Survey. Report 283, 104p.

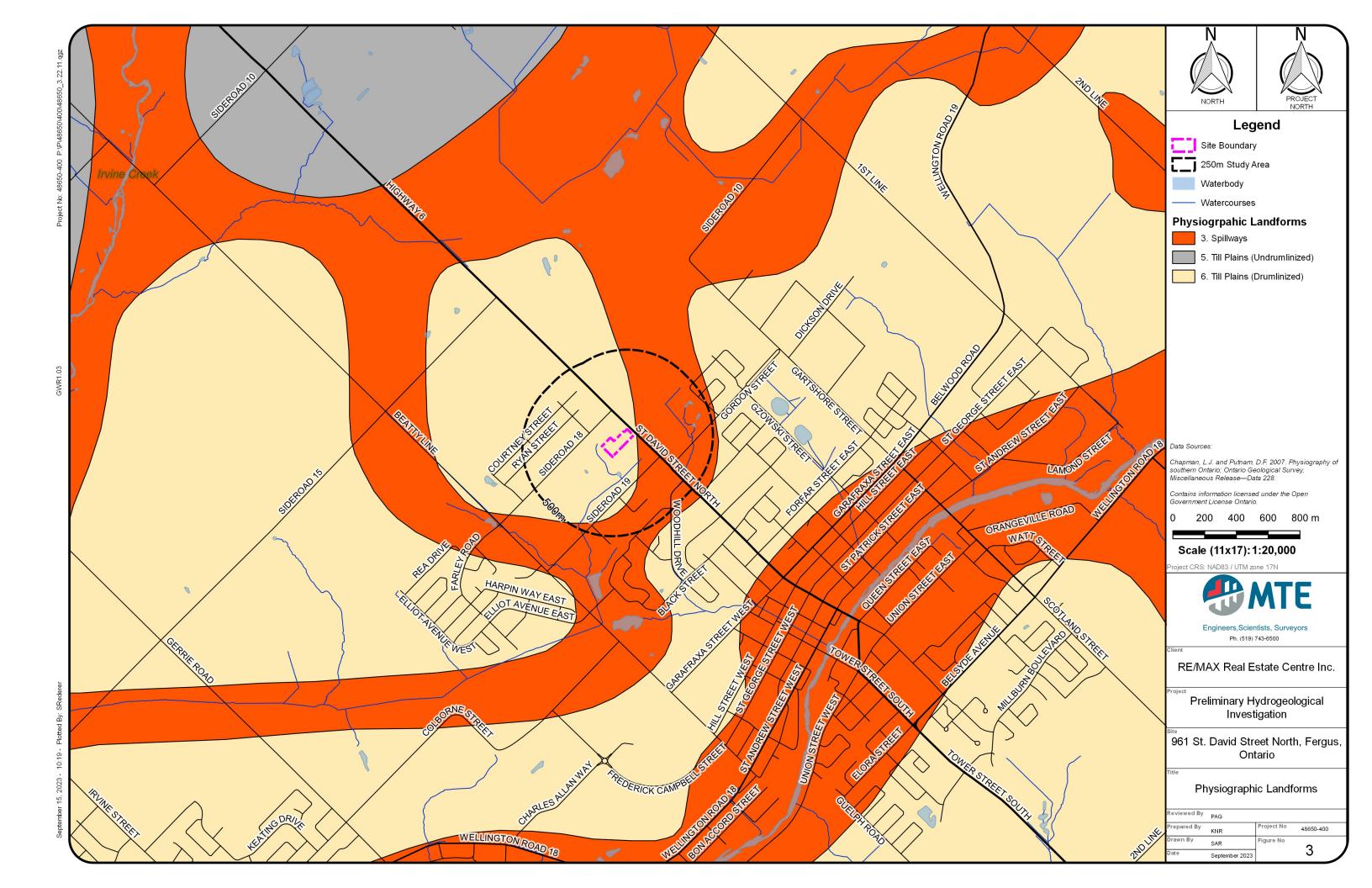
Ministry of the Environment and Climate Change Source Protection Information Atlas:

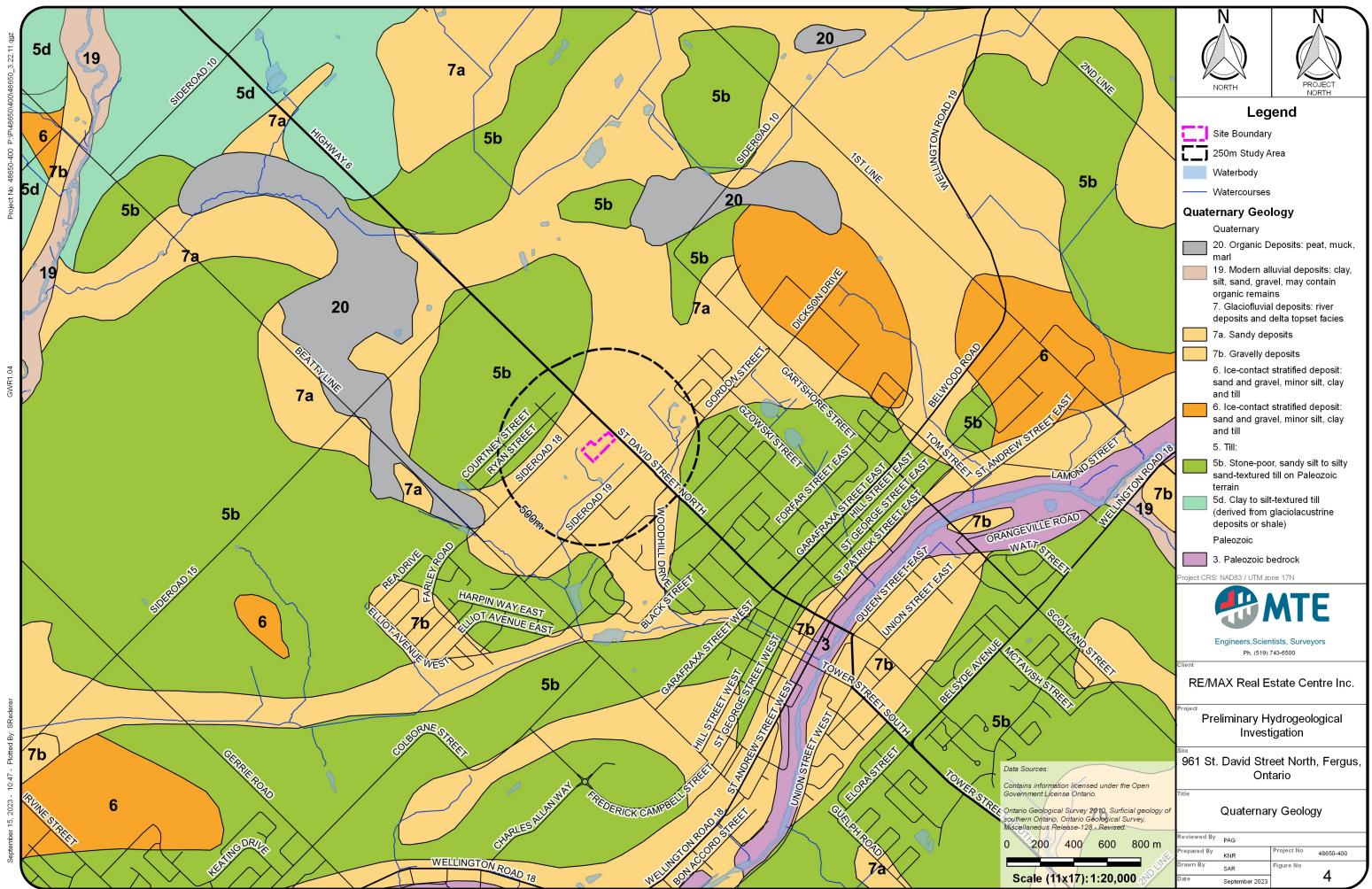
https://www.google.ca/search?q=moecc+source+water+protection+information+atlas&rlz=1C1G GRV_enCA751CA751&oq=moecc+source&aqs=chrome.1.69i57j35i39j0l4.3688j0j4&sourceid=c hrome&ie=UTF-8&safe=active&ssui=on

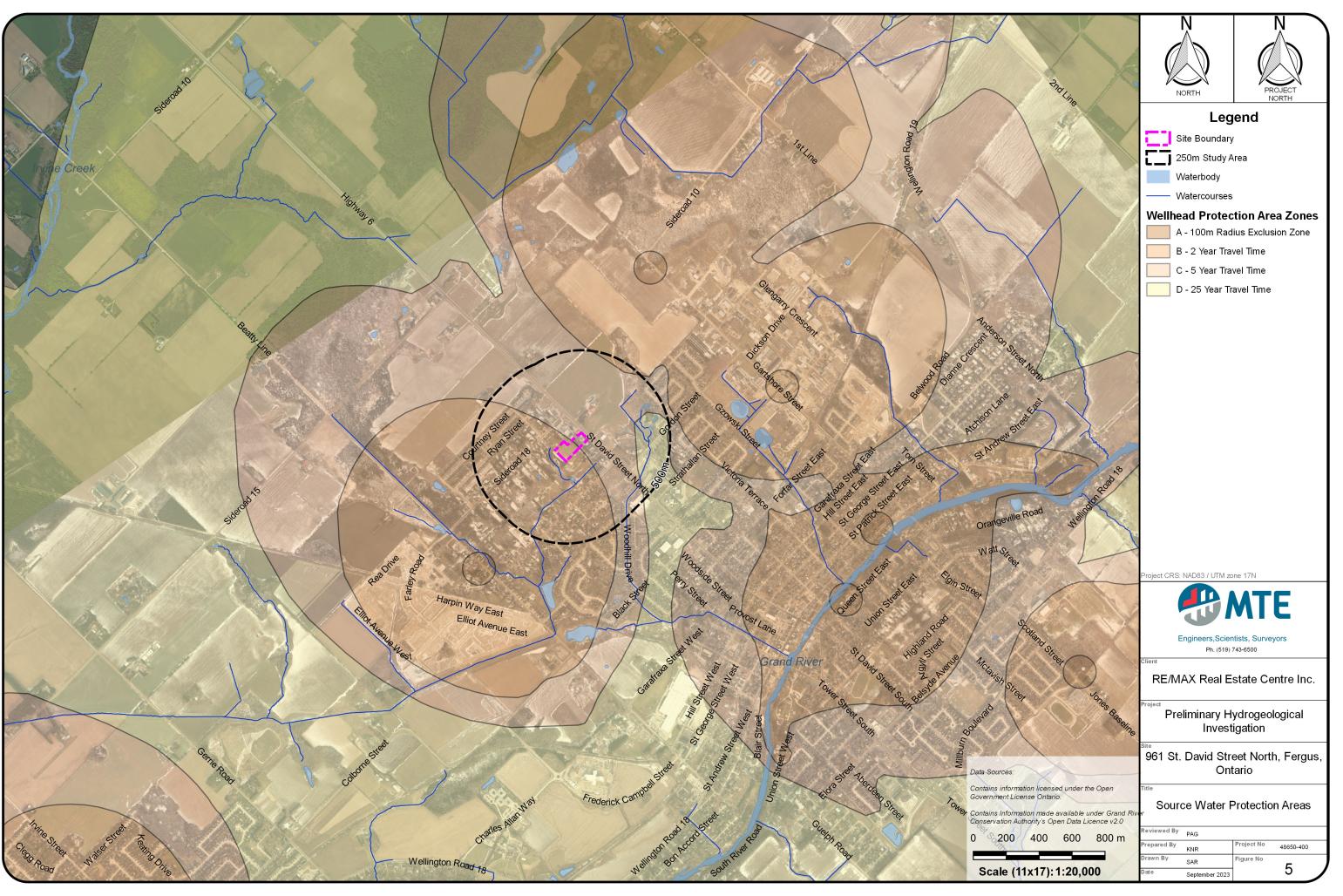

MTE Consultants. 2023. 961 St. David Street North, Geotechnical Investigation Report, MTE Consultants, August 2023.

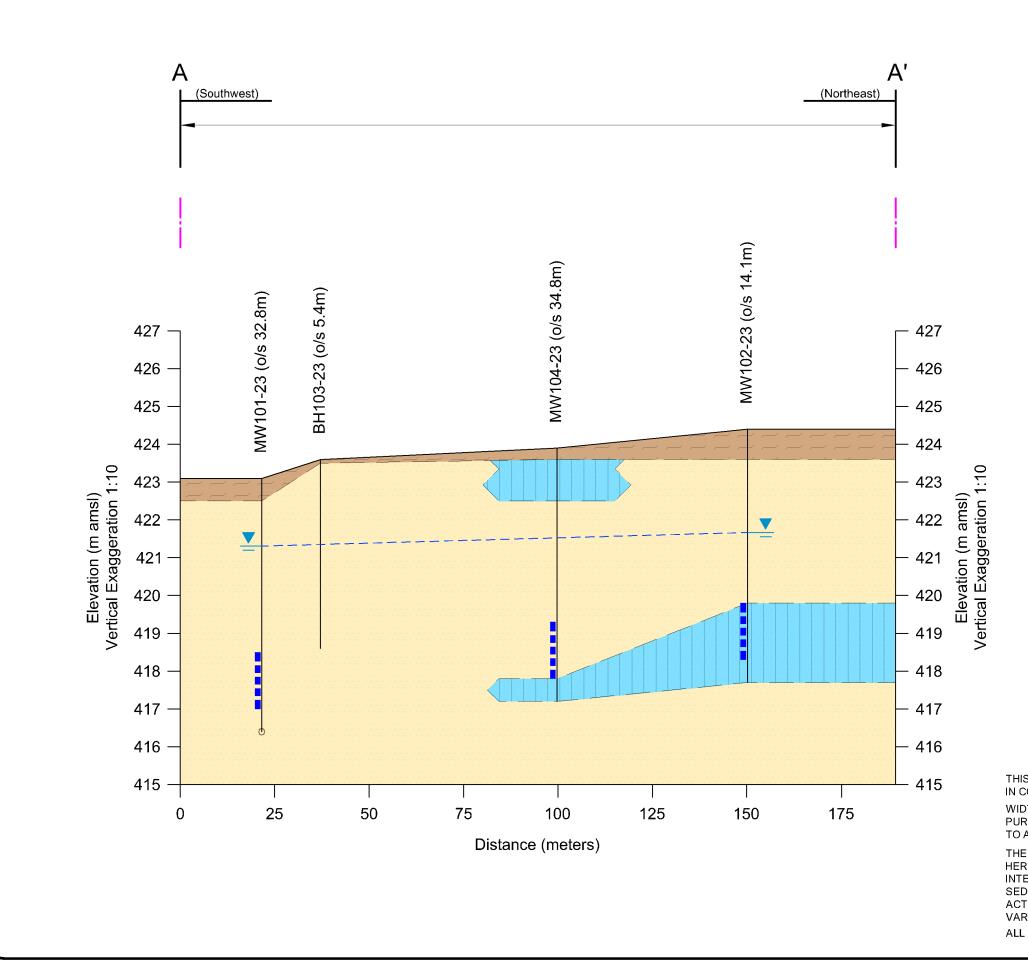
Ontario Geologic Survey. (2010). 1:50 000 Scale Surficial Geology of Southern Ontario.

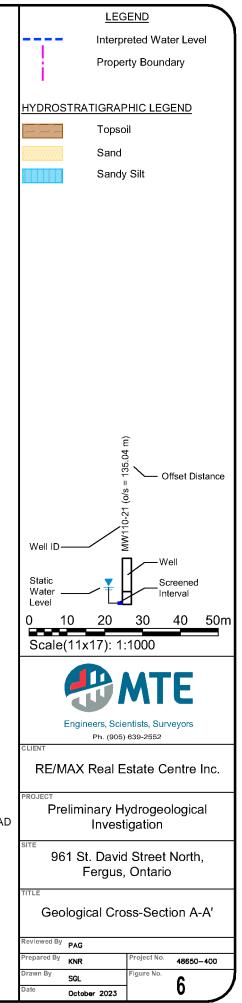
Waterloo Hydrogeologic Inc., (2020): AquiferTest Pro Version 10.0 Software.



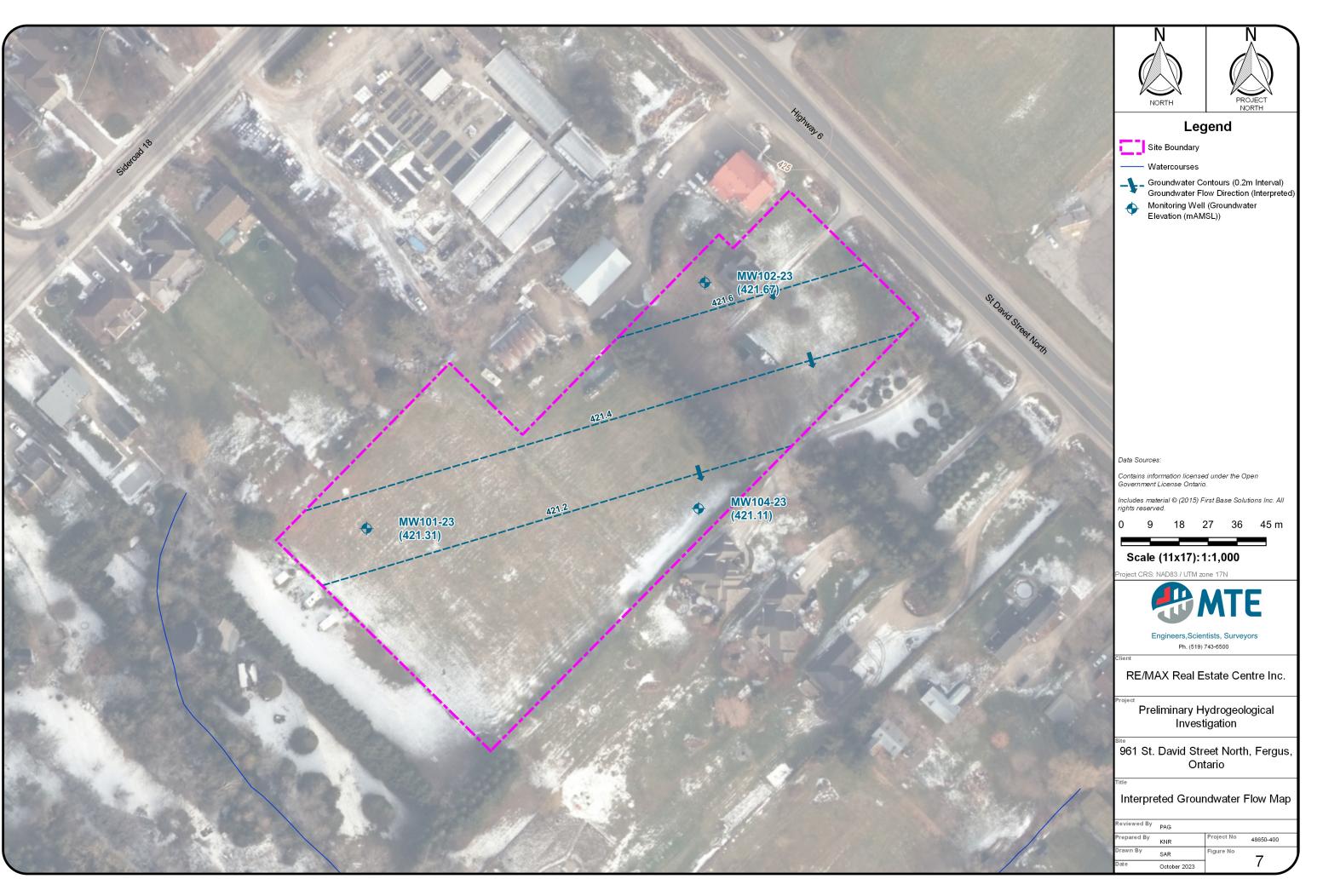








S1.6



THIS FIGURE IS SCHEMATIC ONLY AND TO BE READ IN CONJUNCTION WITH ACCOMPANYING TEXT.

WIDTH OF BOREHOLES FOR ILLUSTRATION PURPOSES ONLY AND DO NOT CORRESPOND TO ACTUAL SPATIAL EXTENT.

THE SIMPLIFIED STRATIGRAPHY PRESENTED HEREIN IS BASED ON PROFESSIONAL INTERPRETATION FROM THE OVERBURDEN SEDIMENTS RECORDED DURING DRILLING, ACTUAL STRATIGRAPHY CONDITIONS MAY VARY BETWEEN AND BEYOND LOCATIONS. ALL LOCATIONS ARE APPROXIMATE.

Table 1: Manual Groundwater Measurements

Date	MW1	01-23	MW1	02-23	MW1	04-23
units	mBTOC	mAMSL	mBTOC	mAMSL	mBTOC	mAMSL
2023-07-26	2.80	421.34	3.82	421.73	3.74	421.17
2023-08-16	2.79	421.35	3.80	421.75	3.72	421.19
2023-09-12	2.83	421.31	3.88	421.67	3.80	421.11
2023-10-11	2.89	421.25	3.97	421.58	3.87	421.04

Notes: mBTOC = metres below top of casing

mAMSL = metres above sea level

MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)		Rate (LPM)	Depth to Unit Base (m)	Colour	Material 1	Material 2	Material 3
														0.3	Brown	Fill		
6704053	548764.2	4840173	1971	787.4	5.2	Boring	Water Supply	Domestic	Fresh	3.7	5.18	3	54.6	3	Brown	Clay		
0704033	J40704.Z	4040175	1971	707.4	J.Z	Bonng	water Suppry	Domestic	116311	5.7	5.10	5	54.0	3.7	Yellow	Gravel	Sand	
														5.2	Black	Coarse Sand	Gravel	
														0.3	Brown	Fill		
6704054	548814.2	4840223	1971	787.4	5.2	Boring	Water Supply	Domestic	Fresh	2.7	5.18	2.7	45.5	2.7	Brown	Clay		
0704034	J400 14.Z	4040223	1971	707.4	J.Z	Bonng	water Suppry	Domestic	116311	2.1	5.10	2.1	45.5	4	Black	Coarse Sand	Gravel	Stones
														5.2	Black	Coarse Sand	Gravel	
														1.5	Brown	Clay		
6704780	548884.2	4840173	1973	762	6.1	Boring	Water Supply	Domestic	Fresh	1.5	6.1	1.2	36.4	3.7	Brown	Sand	Gravel	
														6.1	Grey	Clay	Rock	
														3	Brown	Clay	Sand	Loose
														8.5	Brown	Sand	Loose	
6705305	548847.2	4840324	1974	152.4	72.5	Cable Tool	Water Supply	Domestic	Fresh	72.5	72.54	23.8	159.1	55.8	Grey	Clay	Gravel	Loose
0705505	040047.Z	4040324	1974	152.4	72.5	Cable 1001	water Suppry	Domestic	FIESH	72.5	72.04	23.0	159.1	71.9	Grey	Sand	Loose	
														72.2	Grey	Gravel	Packed	
														72.5	Grey	Limestone	Hard	
														0.9	Brown	Fill		
6706607	E40064 0	4040272	1077	762	4.6	Dering	Matar Cumby	Demostic	Freeh	4 5	4 57	4 5		2.1	Brown	Sand		
6706607	548964.2	4840373	1977	/02	4.6	Boring	Water Supply	Domestic	Fresh	1.5	4.57	1.5	45.5	3.4	Brown	Gravel		
														4.6	Blue	Clay		
														0.3		Topsoil		
														3	Brown	Clay	Stones	Sandy
6707078	548864.2	4840273	1979	762	9.1	Boring	Water Supply	Domestic	Fresh	3.7	9.14	3.7	22.7	4.6	Brown	Sand	Gravel	
														8.5	Grey	Clay		
														9.1		Gravel	Sand	
														4		Gravel	Clay	
														14.3	Grey	Sand	Gravel	Silt
														39.6	Grey	Clay	Gravel	
														52.1	Grey	Sand	Gravel	
6709841	548967.2	1910217	1989	152.4	103.6	Potony (Air)	Water Supply	Domestic	Fresh	73.2	103.63	29.6	68.2	60	Grey	Clay	Gravel	
0709041	040907.Z	4040317	1909	152.4	105.0		water Supply	Domestic	FIESH	13.2	103.03	29.0	00.2	70.1	Brown	Quicksand		
														74.7	White	Limestone	Porous	
										76.5	Brown	Limestone						
															White	Limestone		
														103.6	Brown	Limestone		
														10.7	Brown	Fine Sand		
6710040	E 1 0 E 1 0 0	1010100	1490 1990 152.4 43 Ro	Deter (Air)	Motor Cumple	Domostic	Freeh	2E 4	42.00	22.6	1E E	22.9	Brown	Clay	Sand			
0/10312	548548.2	4040490	1990	152.4	43	Rolary (Alf)	Water Supply	Domestic	Fresh	esh 35.1 42.98 22	22.6	45.5	27.1	Brown	Clay	Gravel		
															Rock			

MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)		Rate (LPM)	Depth to Unit Colour Base (m)	Material 1	Material 2	Material 3
														1.5 Brown	Clay		
6710432	548622.2	4840589	1990	127	41.1	Cable Tool	Water Supply	Domestic	Fresh	38.1	41.15	9.1	90.9	27.1	Sand		
														32 Brown 41.1 Grey	Limestone Limestone		
														0.3	Topsoil		
														10.7 Brown	Clay	Sand	Stones
						Rotary		_						33.5 Grey	Clay	Sand	Gravel
6710780	548947.2	4840292	1991	127	93	(Convent.)	Water Supply	Domestic	Fresh	91.4	92.96	15.2	22.7	54.9 Brown	Clay	Gravel	
						````								76.8 Grey	Clay	Sand	Gravel
														93 Brown	Rock	Limestone	
														0.3 Black	Topsoil		
						Deten								1.8 Brown	Fill		
6710877	548839.2	4840204	1991	127	96	Rotary (Convent.)	Water Supply	Domestic	Fresh	76.2	96.01	25.3	22.7	8.5 Brown	Clay	Coarse Grave	
						(Convent.)								25.9 Grey	Clay	Stones	
														96 Grey	Rock		
														1.8 Brown	Fill		
6710878	548626.2	4840525	1991	127	51.8	Rotary	Water Supply	Domestic	Fresh	45.7	51.82	19.2	45.5	7.9 Brown	Clay	Coarse Grave	
						(Convent.)								27.7 Grey	Clay	Stones	
														51.8 Grey	Rock		
						Deterry								1.2 Black	Topsoil	Fill Fine Sand	
6710879	548516.2	4840413	1991	127	27.4	Rotary (Convent.)	Water Supply	Domestic	Fresh	45.7	54.86	10.7	45.5	9.8 Brown	Clay Clay	Fine Sand Rock	
						(Convent.)								26.8 Grey 54.9 Grey	Rock	RUCK	
														0.9 Brown	Clay		
6711273	548538.2	4840372	1993	762	6.1	Boring	Water Supply	Domestic	Fresh	2.4	6.1	2.4	_	2.7 Grey	Sand	Fine Sand	
0/112/0	010000.2	1010072	1000	102	0.1	Dornig	Water Cappiy	Domootio	TTOOL	2.1	0.1	2.1		6.1 Grey	Sand	Medium Sand	
														0.3 Brown	Clay		
														0.6 Brown	Sand	Clay	Sandy
6711379	548546.2	4840431	1994	762	5.8	Boring	Water Supply	Domestic	Fresh	2.7	5.79	2.7	-	2.7 Brown	Sand		
														4.3 Grey	Sand		
														5.8 Brown	Clay	Sandy	
6711725	548556.2	4840447	1995	838.2	4.6	Digging	Water Supply	Domestic	Fresh	3	4.57	3	45.5	3.7	Previously Dug		
0/11/20	J40300.Z	+0+0447	1990	030.2	4.0	Digging	vvalei Supply	Domestic	116911	3	4.57	5	40.0	4.6 Brown	Sand	Stones	Coarse Sand
6711726	548513.2	4840457	1995	685.8	3.7	Digging	Water Supply	Domestic	Fresh	1.8	3.66	1.8	45.5	3	Previously Dug		
0111120	510010.2	1010707	1000	000.0	0.1	נייששייש		Domostio	110011	1.0	0.00	1.0	10.0	3.7 Brown	Sand	Coarse Sand	
														9.1 Brown	Clay	Sand	
6712757	548483	4840347	1998	152.4	67.1	Rotary (Air)	Water Supply	Domestic	Fresh	48.8	67.06	20.4	45.5	26.5 Grey	Clay	Stones	
														67.1 Brown	Rock		



MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)	Static Level (mBGS)	Rate (LPM)	Depth to Unit Base (m)	Colour	Material 1	Material 2	Material 3
														0.3		Topsoil		
																Clay		
6712890	548886	4840258	1999	152.4	96.9	Rotary (Air)	Water Supply	Domestic	Fresh	92	96.93	36	18.2			Clay	0.11	
						,										Clay	Silty	Gravel
															Brown Brown	Limestone	Silt	
																Limestone Sand		
																Clay	Sand	
															Grey	Clay	Stones	
						Rotary			Not					29	0.09	Limestone		
6713384	548653	4840624	2000	152.4	-	(Convent.)	Water Supply	Domestic	Stated	51.8	59.74	27.1	27.3		Grey	Limestone		
						· · · · · · · · · · · · · · · · · · ·									Brown	Limestone		
															Brown	Limestone		
														59.7	Grey	Limestone		
														0.6	Black	Topsoil		
6714246	548781.3	1810151	2002	152.4	_	Potony (Air)	Water Supply	Domestic	Fresh	56.4	56.39	29.6	36.4		Brown	Clay	Stones	
07 14240	540701.5	4040131	2002	152.4	-		water Suppry	Domestic	116311	50.4	30.39	29.0	50.4	26.5		Limestone	Soft	Fractured
														56.4		Limestone		
															Brown	Topsoil		
												Brown	Topsoil					
																Sand		
																Sand		
6714852	548814	4840415	2004	762	9.4	Boring	Water Supply	Domestic	Fresh	1.5	9.44	-	-			Sand		
						_										Sand Sand		
																Sand		
														94	Grey	Clay	Stones	
																Clay	Stones	
						Other										Topsoil		
6715971	548529	4840531	2006	50	1.8	Method	Test Hole	-	-	1.8	3.3	-	-			Sand	Silt	
																Clay	Gravel	
																Clay		
6716005	E10010	4040004	2006	150 7	101.2	Rotary	Water Supply	Domostio	Freeb	00.7	101 10	0E 6	45.5		-	Clay	Stones	
0710005	548818	4840224	2006	2006 158.7 101.2 Convent.) Water Supply Domestic Fresh 99.7 10	101.19	25.6	45.5	30.8	Brown	Limestone								
															Grey	Limestone		
															Brown	Limestone		
							_									Sand	Gravel	Fill
7122270	548979	4840337	2009	51	4	Boring	Test Hole	Monitoring	Fresh	1.7	4	-	-			Silt	Clay	Dense
								•• • •						4	Brown	Clay	Silt	Hard
7122270	548977	4840358	2009	-	1	-	Test Hole	Monitoring	-	-	4	-	-					
7122270	548983	4840341	2009	-	1	-	Test Hole	Monitoring	-	-	4	-	-					
7131004	548535	4840470	2008	-	3	-	Observation Wells	Monitoring	-	-	9.1	2.1	-					



MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)	Static Level (mBGS)	Rate (LPM)	Depth to Unit Base (m)	Colour	Material 1	Material 2	Material 3
7131004	548661	4840608	-	-	6	-	Observation Wells	Monitoring	-	-	9.1	2.1	-					
																Silt		
																Silt	Clay	Sand
7145117	548897	4840230	2010	51	-	Boring	Test Hole	Monitoring	-	2.8	3.7	-	-			Sand	Gravel	
																Sand		
7445447	540000	40.4000.4	0040				<b>—</b> (11.1				0.7			3.7	Grey	Silt	Sand	Gravel
7145117	548896	4840231	2010	-	6	-	Test Hole	Monitoring	-	-	3.7	2.8	-	4.0	Drawn	Madium Cand		
															Brown Brown	Medium Sand Clay		
7193783	548803	4840120	-	762	9.4	Boring	Water Supply	Domestic	Untested	3.4	9.45	4	45.5		Grey	Clay		
															Grey	Fine Sand	Clay	Stones
							Abandoned-							5.4	Oley		Clay	Otories
7194462	548789	4840173	2012	914	0	-	Other	Domestic	-	-	-	-	-					
7000400	540400	4040550	0040			<b>D</b> · ·	Observation				7.0							
7203469	548460	4840552	2013	38	6	Driving	Wells	Monitoring	-	-	7.6	-	-	7.6	Brown	Silt	Sand	Layered
7203472	548460	4840552	2013	38	2.1	Driving	Observation Wells	Monitoring	-	-	36	-	-	36	Brown	Sand	Silt	
7212222	548853	4840617	2013	-	-	-	-	-	-	-	-	-	-					
7217972	548672	4840605	2014	-	-	-	-	-	-	-	-	-	-					
								Monitoring						1.2	Black			
7219366	548912	4840515	2014	50.8	2.1	Direct Push	Test Hole	And Test	-	-	4.57	-	-		Brown	Fill		
								Hole								Clay	Silt	Till
	- /						Observation	Monitoring							Black	<b>_</b>		
7219367	548936	4840512	2014	50.8	2.1	Direct Push	Wells	And Test	-	-	4.57	-	-		Brown	Fill		
7000555	540050	4040547	0044					Hole						4.6	Brown	Clay	Silt	Till
7223555	548853	4840517	2014	-	-	-	-	- Monitoring	-	-	-	-	-					
7223954	548964	4840524	2014	38.1	0.9	Direct Push	Test Hole	And Test	-	-	3.66	_	-	3	Brown	Sand	Gravel	
								Hole						3.7	Brown	Silt	Sand	
7231008	548484	4840569	2014	-	-	-	Abandoned- Other	Monitoring	-	-	-	-	-					
7236871	548505	4840555	2015	50.8	2.7	Boring	Test Hole	Test Hole	Untested	3	4.27	-	-	4.3	Brown	Sand		
7241640	548758	4840116	2015	-	-	-	Abandoned- Other	-	-	-	-	-	-					
7246301	549067	4840533	-	38	1.2	Driving	-	Monitoring	-	-	2.7	-	-	2.7	Brown	Sand	Silt	
7246302	549027	4840477	-	38	3	-	-	-	-	-	4.5	-	-	4.5	Brown	Sand	Silt	Gravel
7262060	549067	4840533	2016	-	-	-	Abandoned- Other	-	-	-	-	-	_					
7262061	549027	4840477	2016	-	-	-	Abandoned- Other	-	-	-	-	-	-					
7270847	548882	4840322	2016	-	-	-	Abandoned- Other	Domestic	-	-	-	-	-					



MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)	Static Level (mBGS)	Rate (LPM)	Depth to Unit Base (m)	Colour	Material 1	Material 2	Material 3
7270848	548932	4840297	2016	-	-	-	Abandoned- Other	Domestic	-	-	-	-	-					
7338945	548906	4840224	2019	-	-	-	Abandoned- Other	-	Untested	3.1	-	-	-					
7338946	548906	4840224	2019	-	-	-	Abandoned- Other	-	-	4.5	-	-	-					
7344061	548959	4840432	2019	51	0.9	Boring	Observation Wells	Monitoring	Untested	1.5	3.9	-	-		,	Silt	Clay	Dense
7344063	548988	4840446	2019	51	0.9	Boring	Observation Wells	Monitoring	Untested	1.5	3.9	-	-		Brown Grey	Sand Silt	Clay	Loose Dense
7344068	549033	4840377	2019	51	0.9	Boring	Observation Wells	Monitoring	-	-	3.3	-	-		Brown Grey	Sand Silt	Silt Sand	Soft Soft
7344081	549067	4840393	2019	51	0.9	Boring	Observation Wells	Monitoring	Untested	1.2	3.9	-	-		Brown Brown	Sand Silt	Silt Sand	Soft Soft
7344097	549007	4840408	2019	51	0.9	Boring	Observation Wells	Monitoring	Untested	1.5	3.9	-	-		Brown Grey	Sand Silt	Clay	Loose Dense
7346404	548411	4840396	2019	-	-	-	Abandoned- Quality	-	-	-	-	4	-					
7346405	548403	4840370	2019	-	-	-	Abandoned- Supply	-	-	-	-	3	-					
7357949	548404	4840377	2018	158.7	28	Rotary (Convent.)	Water Supply	Domestic	Fresh	30.5	47.24	9.1	45.5	7.9 12.2 27.4 28	Brown Brown Brown Brown Brown Brown Blue	Topsoil Sand Clay Clay Limestone Limestone Limestone	Sand Stones Shale	Soft Soft Hard Layered Fractured Hard
7368359	549046	4840355	2020	-	-	-	Abandoned- Other	-	-	-	-	-	-					
7368438	548419	4840393	2020	157.5	49.4	Rotary (Convent.)	Water Supply	Domestic	Untested	-	49.4	39.3	45	17.2 27.1	Grey Grey	Clay Clay Clay Limestone Limestone	Sand Fine Gravel Gravel Fractured	Stones
7377195	548868	4840510	2020	50.8	1.5	Direct Push	Observation Wells	Monitoring	-	-	3.05	-	-		-	Sand	Silt	
7377196	548771	4840550	2020	50.8	4.6	Direct Push	Observation Wells	Monitoring	-	-	6.1	-	-	5.2	Brown	Sand Silt		
7405170	548962	4840315	2021	50	0.3	-	Abandoned- Other	-	Untested	1.1	-	-	-		-			
7405245	548972	4840467	2021	50.8	1.5	Auger	Observation Wells	Monitoring	-	-	4.57	-	-	3.8		Fill Sand Till	Topsoil Clay	



MECP Well No.	Easting	Northing	Year Drilled	Nominal Casing Diameter (mm)	Casing End (mBGS)	Drilling Method	Well Status	Well Use	Water Quality	First Water Found (mBGS)	Total Depth (mBGS)	Static Level (mBGS)	Rate (LPM)	Depth to Unit Base (m)	Colour	Material 1	Material 2	Material 3
							Observation							0.9	Brown	Topsoil		
7405246	549067	4840585	2021	50.8	3	Auger	Wells	Monitoring	-	-	6.1	-	-	1.8	Brown	Clay	Hard	
							WCII3								Grey	Clay	Gravel	
							Observation								Brown	Topsoil		
7405247	549006	4840646	2021	50.8	2.3	Auger	Wells	Monitoring	-	-	3.81	-	-		Brown	Clay	Hard	
																Clay	Till	Hard
															Brown	Fill	Topsoil	
7405248	548968	4840464	2021	50.8	6.1	Auger	Observation	Monitoring	-	_	9.14	l _	_			Sand		
					••••	,	Wells	literitig			••••				Brown	Till	Clay	
															Grey	Gravel		
	- / / -						Observation								Brown	Fill		
7405249	548940	4840558	2021	50.8	1.5	Auger	Wells	Monitoring	-	-	4.57	-	-		Brown	Clay		
																Sand	Silt	
							Observation								Brown	Fill	Topsoil	
7405250	548978	4840529	2021	50.8	1.5	Auger	Wells	Monitoring	-	-	4.57	-	-			Sand		
												ļ			Brown	Till	Clay	
							Observation								Brown	Fill	Topsoil	
7405251	549003	4840506	2021	50.8	1.5	Auger	Wells	Monitoring	-	-	4.57	-	-			Sand		
												ļ		4.6	Brown	Till	Clay	
7406148	548673	4840487	2021	-	-	-	-	-	-	-	-	-	-					
7417861	549013	4840377	2022	-	-	-	-	-	-	-	-	-	-					





			In-Situ Hydraulic Conduc	tivity		
Monitoring Well	Ground Surface Elevation	Screened Interval (m bgs/ m amsl)	Soil Description	Hydraulic Conductivity (m/sec)	Method	Calculation
MW101-23	423.10	4.6 - 6.1 418.5 - 417.0	SAND, trace Silt and Clay	3.1 X 10 ⁻⁵	Rising Head	Bouwer & Rice
MW102-23	424.40	4.6 - 6.1 419.8 - 418.3	Sandy SILT, trace Clay	1.3 X 10 ⁻⁵	Rising Head	Bouwer & Rice
			Particle Size Distributi	on		
Monitoring Well / Borehole Name	Ground Surface Elevation	Sample Identification and Depth (m bgs)	Screened Interval (m bgs/ m amsl)	Soil Description	Hydraulic Conductivity Range (m/sec)	Formula
MW101-23	423.10 SS-5 4.6-5.0		4.6 - 6.1 418.5 - 417.0	SAND, trace Silt and Clay	1.5 x 10 ⁻⁴	Kozeny Carmen
MW102-23	424.40	SS-5 4.6-5.0	4.6 - 6.1 419.8 - 418.3	Sandy SILT, trace Clay	4.9 x 10 ⁻⁶	Kozeny Carmen
MW104-23	423.90	SS-5 4.6-5.0	4.6 - 6.1 419.3 - 417.8	SAND, some Silt, trace Clay	3.9 x 10 ⁻⁵	Kozeny Carmen

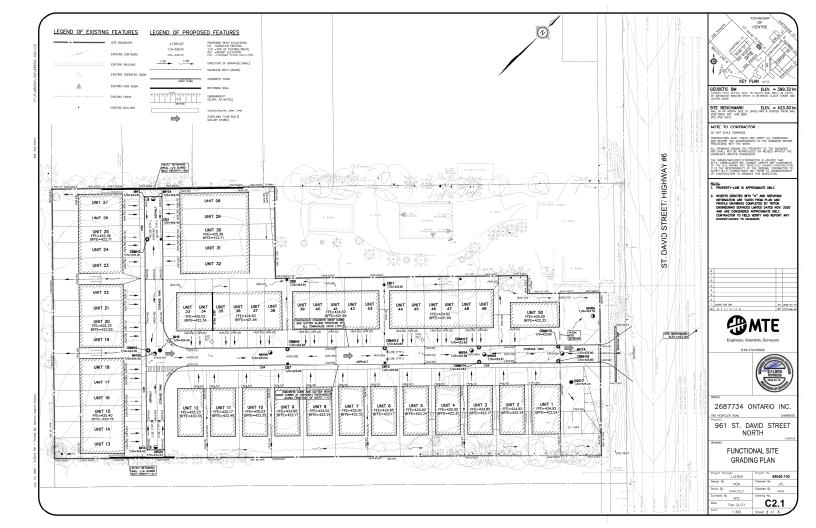


Date Sampled         26-Jul-2023         26-Jul-202           Time Sampled         12:50         12:35           ALS Sample ID         WT2322882-001         WT2322882           Parameter         Lowest Detection Limit         PWQO         Units         WT2322882-001         WT2322882           Physical Tests (Water)         Units         Units         State         State         State         State           Colour, Apparent         2.0         NV         CU         118         512           Conductivity         2.0         NV         mmos/cm         2440         2540           Hardness (as CaCO3)         0.5         NV         mg/L         540         868           PH         0.1         6.5-8.5         PH units         7.75         7.57           Total Dissolved Solids         10         NV         mg/L         296         327           Ammonia, Total (as CaCO3)         2         NV         mg/L         581         547           Fluoride (CI)         0.5         NV         mg/L         521         14.1           Nitrate (as N)         0.01         NV         mg/L         521         14.1           Nitrate (as N)         0.02         N	-23
ALS Sample ID         WT2322882-001         WT2322882-001           Parameter         Lowest Detection         PWQO         Units         WT2322882-001         WT2322882           Physical Tests (Water)         Units         1         512         State         State	)23
ALS Sample ID         WT2322882-001         WT2322882-001           Parameter         Lowest Detection         PWQO         Units         WT2322882-001         WT2322882           Physical Tests (Water)         Units          Status         Status         Status         Status         Status           Colour, Apparent         2.0         NV         CU         118         512           Conductivity         2.0         NV         umkos/cm         2440         2540           Hardness (as CaCO3)         0.5         NV         mg/L         540         868           pH         0.1         6.5-8.5         pH units         7.75         7.57           Total Dissolved Solids         10         NV         mg/L         1460         1630           Turbidity         0.1         NV         mg/L         1460         1630           Anions and Nutrients (Water)         Maining, Total (as CaCO3)         2         NV         mg/L         296         327           Ammonia, Total (as N)         0.005         NV         mg/L         5.21         14.1           Nitrate (as N)         0.02         NV         mg/L         5.21         14.1           Nitrate (as N)	
Parameter         Lowest Detection Limit         PWQO PWQO         Units            Physical Tests (Water)         Colour, Apparent         2.0         NV         CU         118         512           Conductivity         2.0         NV         umhos/cm         2440         2540           Hardness (as CaCO3)         0.5         NV         mg/L         540         868           pH         0.1         6.5-8.5         pH units         7.75         7.57           Total Dissolved Solids         10         NV         mg/L         296         327           Aninos and Nutrients (Water)            408         408           Animonia, Total (as N)         0.005         NV         mg/L         296         327           Ammonia, Total (as N)         0.005         NV         mg/L         <0.0050	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Hardness (as CaCO3) $0.5$ NV         mg/L $540$ $868$ pH $0.1$ $6.5$ - $8.5$ pH units $7.75$ $7.57$ Total Dissolved Solids $10$ NV         mg/L $1460$ $1630$ Turbidity $0.1$ NV         mg/L $1460$ $1630$ Anions and Nutrients (Water)         N         NU $35.0$ $408$ Anions and Nutrients (Water) $NV$ mg/L $296$ $327$ Ammonia, Total (as CaCO3) $2$ NV $mg/L$ $581$ $547$ Fluoride (Cl) $0.55$ NV $mg/L$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.000$ $<0.005$ $<0.053$ $<0.0010$ $<0.053$ $<0.0010$ $<0.0053$ $<0.0010$ $<0.0053$ $<0.0010$ $<0.0053$ $<0.0010$ $<0.0053$ $<0.0010$ $<0.0053$ $<0.0010$ $<0.0010$	
pH         0.1         6.5-8.5         pH units         7.75         7.57           Total Dissolved Solids         10         NV         mg/L         1460         1630           Turbidity         0.1         NV         NTU         35.0         408           Anions and Nutrients (Water)	
Total Dissolved Solids         10         NV         mg/L         1460         1630           Turbidity         0.1         NV         NTU         35.0         408           Anions and Nutrients (Water)	
Turbidity $0.1$ NV         NTU $35.0$ $408$ Anions and Nutrients (Water)         N         mg/L $296$ $327$ Alkalinity, Total (as N) $0.005$ NV         mg/L $296$ $327$ Ammonia, Total (as N) $0.005$ NV         mg/L $<0.0050$ $0.0236$ Chloride (Cl) $0.5$ NV         mg/L $<0.000$ $<0.02$ NV         mg/L $<0.0000$ $<0.0100$ $<0.0100$ $<0.0100$ $<0.0100$ $<0.0100$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.0500$ $<0.00010$ $<0.00010$ $<0.00010$	
Anions and Nutrients (Water)         NV         mg/L         296         327           Alkalinity, Total (as N)         0.005         NV         mg/L         <0.0050	
Anions and Nutrients (Water)         NV         mg/L         296         327           Alkalinity, Total (as CaCO3)         2         NV         mg/L         296         327           Ammonia, Total (as N)         0.005         NV         mg/L         <0.0050	
Ammonia, Total (as N) $0.005$ NV $mg/L$ $<0.0050$ $0.0236$ Chloride (Cl) $0.5$ NV $mg/L$ $581$ $547$ Fluoride (F) $0.02$ NV $mg/L$ $<0.100$ $<0.100$ Nitrate (as N) $0.02$ NV $mg/L$ $<2.100$ $<0.100$ Nitrite (as N) $0.01$ NV $mg/L$ $<0.050$ $<0.050$ Orthophosphate-Dissolved (as P) $0.001$ NV $mg/L$ $0.0053$ $<0.0010$ Phosphorus (P)-total $0.002$ $0.01^*$ $mg/L$ $0.0854$ $0.453$ Sulfate (SO4) $0.3$ NV $mg/L$ $23.0$ $108$ Total Metals $0.0001$ $0.02^*$ $mg/L$ $<0.0010$ $<0.0010$ Aluminium (Al)-total $0.0001$ $0.02^*$ $mg/L$ $<0.0010$ $<0.0010$ Assenic (As)-total $0.0001$ $0.10$ $mg/L$ $<0.0010$ $<0.0010$ Arsenic (As)-total $0.0001$ $NV$ <t< td=""><td></td></t<>	
Ammonia, Total (as N) $0.005$ NV $mg/L$ $<0.0050$ $0.0236$ Chloride (Cl) $0.5$ NV $mg/L$ $581$ $547$ Fluoride (F) $0.02$ NV $mg/L$ $<0.100$ $<0.100$ Nitrate (as N) $0.02$ NV $mg/L$ $<2.100$ $<0.100$ Nitrite (as N) $0.01$ NV $mg/L$ $<0.050$ $<0.050$ Orthophosphate-Dissolved (as P) $0.001$ NV $mg/L$ $0.0053$ $<0.0010$ Phosphorus (P)-total $0.002$ $0.01^*$ $mg/L$ $0.0854$ $0.453$ Sulfate (SO4) $0.3$ NV $mg/L$ $23.0$ $108$ Total Metals $0.0001$ $0.02^*$ $mg/L$ $<0.0010$ $<0.0010$ Aluminium (Al)-total $0.0001$ $0.02^*$ $mg/L$ $<0.0010$ $<0.0010$ Assenic (As)-total $0.0001$ $0.10$ $mg/L$ $<0.0010$ $<0.0010$ Arsenic (As)-total $0.0001$ $NV$ <t< td=""><td></td></t<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	;
Fluoride (F) $0.02$ NV         mg/L $<0.100$ $<0.100$ Nitrate (as N) $0.02$ NV         mg/L $5.21$ $14.1$ Nitrite (as N) $0.01$ NV         mg/L $<0.050$ $<0.050$ Orthophosphate-Dissolved (as P) $0.001$ NV         mg/L $0.0053$ $<0.0010$ Phosphorus (P)-total $0.002$ $0.01^*$ mg/L $0.0854$ $0.453$ Sulfate (SO4) $0.3$ NV         mg/L $23.0$ $108$ Total Metals $0.005$ $0.075^*$ mg/L $<0.0010$ $<0.0010$ Aluminium (Al)-total $0.005$ $0.075^*$ mg/L $<0.0010$ $<0.0010$ Arsenic (As)-total $0.0001$ $0.02^*$ mg/L $<0.0010$ $<0.0010$ Beryilium (Ba)-total $0.0001$ $NV$ mg/L $<0.00050$ $<0.00050$ Boron (B)-total $0.0011$ $1.10$ mg/L $<0.00050$ $<0.00050$ Boron (B)-total $0.0055$ $NV$ m	
Nitrate (as N)         0.02         NV         mg/L         5.21         14.1           Nitrite (as N)         0.01         NV         mg/L         <0.050	)
Nitrite (as N) $0.01$ NV         mg/L $< 0.050$ $< 0.050$ Orthophosphate-Dissolved (as P) $0.001$ NV         mg/L $0.0053$ $< 0.0010$ Phosphorus (P)-total $0.002$ $0.01^*$ mg/L $0.0854$ $0.453$ Sulfate (SO4) $0.3$ NV         mg/L $23.0$ $108$ Total Metals $0.001$ $0.02^*$ $mg/L$ $23.0$ $108$ Aluminium (Al)-total $0.005$ $0.075^*$ $mg/L$ $0.0010$ $< 0.0010$ Arsenic (As)-total $0.0001$ $0.02^*$ $mg/L$ $< 0.0010$ $< 0.0010$ Arsenic (As)-total $0.0001$ $0.10$ $mg/L$ $< 0.0010$ $0.00197$ Barium (Ba)-total $0.0001$ $NV$ $mg/L$ $< 0.0010$ $0.00197$ Beryilium (Be)-total $0.0001$ $NV$ $mg/L$ $< 0.00020$ $0.00020$ Bismuth (Bi)-total $0.0005$ $NV$ $mg/L$ $< 0.00050$ $< 0.00050$ <td></td>	
Orthophosphate-Dissolved (as P)         0.001         NV         mg/L         0.0053         <0.0010           Phosphorus (P)-total         0.002         0.01*         mg/L         0.0854         0.453           Sulfate (SO4)         0.3         NV         mg/L         23.0         108           Total Metals           0.005         0.075*         mg/L         0.6661         3.65           Aluminium (Al)-total         0.005         0.075*         mg/L         <0.0010	)
Phosphorus (P)-total         0.002         0.01*         mg/L         0.0854         0.453           Sulfate (SO4)         0.3         NV         mg/L         23.0         108           Total Metals           0.005         0.075*         mg/L         23.0         108           Aluminium (Al)-total         0.005         0.075*         mg/L         0.661         3.65           Antimony (Sb)-total         0.0001         0.02*         mg/L         <0.0010	
Sulfate (SO4)         0.3         NV         mg/L         23.0         108           Total Metals	-
Total Metals         0.005         0.075*         mg/L         0.661         3.65           Antimony (Sb)-total         0.0001         0.02*         mg/L         <0.0010	
Antimony (Sb)-total         0.0001         0.02*         mg/L         <0.0010         <0.0010           Arsenic (As)-total         0.0001         0.10         mg/L         <0.0010	
Antimony (Sb)-total         0.0001         0.02*         mg/L         <0.0010         <0.0010           Arsenic (As)-total         0.0001         0.10         mg/L         <0.0010	
Arsenic (As)-total         0.0001         0.10         mg/L         <0.0010         0.00197           Barium (Ba)-total         0.0001         NV         mg/L         0.0762         0.105           Beryilium (Be)-total         0.0001         1.10         mg/L         <0.00020	0
Barium (Ba)-total         0.0001         NV         mg/L         0.0762         0.105           Beryilium (Be)-total         0.0001         1.10         mg/L         <0.00020	7
Beryilium (Be)-total         0.0001         1.10         mg/L         <0.00020         0.00020           Bismuth (Bi)-total         0.00005         NV         mg/L         <0.00050	
Bismuth (Bi)-total         0.00005         NV         mg/L         <0.00050         <0.0005           Boron (B)-total         0.01         0.2*         mg/L         <0.10	1
Boron (B)-total         0.01         0.2*         mg/L         <0.10         <0.10           Cadmium (Cd)-total         0.00005         0.0002         mg/L         <0.000050	0
Cadmium (Cd)-total         0.00005         0.0002         mg/L         <0.000050         0.000112           Calcium (Ca)-total         0.05         NV         mg/L         162         268           Cesium (Cs)-total         0.00001         NV         mg/L         <0.00010	
Calcium (Ca)-total         0.05         NV         mg/L         162         268           Cesium (Cs)-total         0.00001         NV         mg/L         <0.00010	2
Cesium (Cs)-total         0.00001         NV         mg/L         <0.00010         0.00036           Chromium (Cr)-total         0.0005         NV         mg/L         <0.0050	
Chromium (Cr)-total         0.0005         NV         mg/L         <0.0050         0.00605           Cobalt (Co)-total         0.0001         0.0009*         mg/L         <0.0010	9
Cobalt (Co)-total         0.0001         0.0009*         mg/L         <0.0010         0.00269           Copper (Cu)-total         0.0005         0.005*         mg/L         <0.0050	5
Copper (Cu)-total         0.0005         0.005*         mg/L         <0.0050         0.0108	9
Lead (Pb)-total 0.00005 0.025 mg/L 0.00138 0.00656	3
Lithium (Li)-total 0.001 NV mg/L <0.010 <0.010	
Magnesium (Mg)-total         0.005         NV         mg/L         32.9         48.3	
Manganese (Mn)-total         0.0005         NV         mg/L         0.0642         0.288	
Molybdenum (Mo)-total         0.00005         0.04*         mg/L         <0.00050         <0.00050	
Nickel (Ni)-total 0.0005 0.025 mg/L <0.0050 0.00934	
Phosphorus (P)-total         0.05         0.01*         mg/L         <0.50         0.592	



Sam	ple ID			MW102-23	MW104-23
Date S	ampled			26-Jul-2023	26-Jul-2023
	ampled			12:50	12:35
ALS Sa	mple ID			WT2322882-001	WT2322882-002
Parameter	Lowest Detection Limit	PWQO	Units		
Potassium (K)-total	0.05	NV	mg/L	2.41	4.06
Rubidium (Rb)-total	0.0002	NV	mg/L	<0.0020	0.00550
Selenium (Se)-total	0.00005	0.10	mg/L	<0.00050	<0.00050
Silicon (Si)-total	0.1	NV	mg/L	6.86	10.9
Silver (Ag)-total	0.00005	0.0001	mg/L	<0.00010	<0.00010
Sodium (Na)-total	0.05	NV	mg/L	314	295
Strontium (Sr)	0.001	NV	mg/L	0.355	0.615
Sulfer (S)-total	0.5	NV	mg/L	7.54	38.1
Tellurium (Te)-total	0.0002	NV	mg/L	<0.0020	<0.0020
Thallium (TI)-total	0.00001	0.0003*	mg/L	<0.00010	<0.00010
Thorium (Th)-total	0.0001	NV	mg/L	<0.0010	0.00141
Tin (Sn)-total	0.0001	NV	mg/L	<0.0010	<0.0010
Titanium (Ti)-total	0.0003	NV	mg/L	0.0282	0.144
Tungsten (W)-total	0.0001	0.03*	mg/L	<0.0010	<0.0010
Uranium (U)-total	0.00001	0.005*	mg/L	0.000434	0.000752
Vandium (V)-total	0.0005	0.006*	mg/L	<0.0050	0.0080
Zinc (Zn)-total	0.003	0.03	mg/L	<0.030	<0.030
Zirconium (Zr)-total	0.0002	0.004*	mg/L	<0.0020	0.00222
VOCs					
Benzene	0.50	100*	μg/L	<0.50	<0.50
Ethylbenzene	0.50	8*	μg/L	<0.50	<0.50
Toluene	0.50	0.8*	μg/L	<0.50	<0.50
Xylene, m+p-	0.40	2*	μg/L	<0.40	<0.40
Xylene, o-	0.30	40*	μg/L	<0.30	<0.30
Xylene, total	0.50	NV	μg/L	<0.50	<0.50
BTEX, total	1.0	NV	μg/L	<1.0	<1.0
Hydrocarbons					
F1 (C6-C10)	25	NV	μg/L	<25	<25
F2 (C10-C16)	100	NV	μg/L	<100	<100
F3 (C16-C34)	250	NV	μg/L	<250	<250
F4 (C34-C50)	250	NV	μg/L	<250	<250
F1-BTEX	25	NV	μg/L	<25	<25
Hydrocarbons, total (C6-C50)	240	NV	μg/L	<370	<370

# PWQO = Provincial Water Quality Objectives


* - Interm PWQO

Bold and Highlighted = parameter exceeds PWQO



# Site Concept Plan







# **Borehole Logs**



## ID No.: MW101-23

Project Name: 961 St. David Street North Geotechnical Investigation

MTE File No.: 48650-300

Client: 2687734 Ontario Inc.

Site Location: 961 St. David Street North, Fergus, ON

Date Completed: 6/27/2023

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME75 Track Mounted

Drill Method: Hollow Stem Augers

Protective Cover: Monument Casing

		Subsurface Profile		Sai	mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Dynamic Cone × × Standard Penetration 20 40 60 80	Shear Strength (PP)	Water Content % • 10 20 30	Groundwater Observations and Standpipe Details
0     1       0     1       0     1       2     1       4     1       10     1       12     1       14     1       14     1	$=$ $2^{2}^{2}^{2}^{2}$	Ground Surface <b>TOPSOIL</b> dark brown sandy silt, trace organics (600 mm) <b>SILT</b>	423.1 0.0 422.5 0.6	-					Concrete
4		loose dark brown silt, some sand, trace clay, moist SAND compact dark brown sand, trace	421.6	1	SS			<b>5</b>	
6		gravel and silt, moist saturated	1.5	2	SS	23		20	C Riser
8				3	SS			<b></b> 19	Bentonite
10				4	SS	23		_23	
14			418.5						
16		loose, trace clay	4.6	5	SS	8		_25	ed Screen
18 18 18 1 1 6 20									Sand Pack ■
20			<u>416.4</u> 6.7	6	SS	7		<b>2</b> 3	· · · · · · · · · · · · · · · · · · ·
24		Drilling Terminated	0.1						-

Field Technician: C. McCulla

Drafted by: A. Challis

Reviewed by: K. Rundle Drake



# Notes:

Water encountered at 1.5 mbgs during drilling. Water measured at 1.7 mbgs (Elevation

421.4 masl) on August 16, 2023.

## ID No.: MW102-23

Project Name: 961 St. David Street North Geotechnical Investigation

MTE File No.: 48650-300

Client: 2687734 Ontario Inc.

Site Location: 961 St. David Street North, Fergus, ON

Date Completed: 6/27/2023

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME75 Track Mounted

Drill Method: Hollow Stem Augers

Protective Cover: Monument Casing

Subsurface Profile				Sample						
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Dynamic Cone × Standard Penetration 20 40 60 80	Shear Strength (PP)	Water Content • % 10 20 30	Groundwater Observations and Standpipe Details	
$\int \frac{ft}{0} \frac{m}{0}$		Ground Surface	424.4							
2	$\lambda^{l_{j_{l_{j_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_{l_$	<b>TOPSOIL</b> dark brown sandy silt, trace organics (820 mm)	0.0						Concrete	
0 10 10 10 10 10 10 10 10 10 1		SAND loose to compact brown sand, some silt, moist	423.6 0.8	1	SS	5		9	Concrete Riser	
6 		SILTY SAND compact brown silty sand, saturated	422.6 1.8 422.1		ss	10		_23		
8		SAND dense brown sand, trace silt, saturated	2.3	3	SS	33		<b>1</b> 8	Bentonite	
				4	SS	35		_21		
			419.8							
14 16 16		SANDY SILT compact grey sandy silt, trace clay, saturated	4.6	5	ss	23		20	Sand Pack →	
18									Sand Pack	
20 - 6			417.7 6.7	6	ss	13		_26	. <u>III ⊥ III</u> <b>⊈</b> '	
22		Drilling Terminated	6.7							
									-	

Field Technician: C. McCulla

Drafted by: A. Challis

Reviewed by: K. Rundle Drake



#### Notes:

Water encountered at 1.8 mbgs during drilling. Water measured at 2.6 mbgs (Elevation

421.8 masl) on August 16, 2023.

## ID No.: BH103-23

Project Name: 961 St. David Street North Geotechnical Investigation

MTE File No.: 48650-300

Client: 2687734 Ontario Inc.

Site Location: 961 St. David Street North, Fergus, ON

Date Completed: 6/27/2023

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME75 Track Mounted

Drill Method: Hollow Stem Augers

Protective Cover: N/A

Subsurface Profile				Sa	mple								
Depth	Symbol	Soil Description		Number	Type	Dynamic Cone × × Standard Penetration 20 40 60 80		Shear Strength (PP)         kPa            Shear Strength (FV)         kPa            50         100         150         200				Groundwater Observations and Standpipe Details	
0 1 1 1 1 1 1 1 1 1 1 1 1 1		Ground Surface TOPSOIL dark brown sandy silt, trace organics, moist (50 mm) SAND very loose brown sand, some organics, trace silt, damp to wet compact saturated loose, trace gravel	423.6 0.0 422.1 1.5 421.3 2.3 420.6 3.0	1	SS SS SS	3	7				4	18 22 16	← Bentonite
12 12 14 14 14 16 18 20 14 14 16 20 14 14 14 16 20 14 14 14 14 14 14 14 14 14 14		compact, some silt	4 419.0 4.6 5 418.6 5.0						← Wet Cave Water encountered at 2.3 mbgs during drilling				

Field Technician: C. McCulla

Drafted by: A. Challis

Reviewed by: K. Rundle Drake



# ID No.: MW104-23

Project Name: 961 St. David Street North Geotechnical Investigation

MTE File No.: 48650-300

Client: 2687734 Ontario Inc.

Site Location: 961 St. David Street North, Fergus, ON

Date Completed: 6/27/2023

Drilling Contractor: London Soil Test Ltd.

Drill Rig: CME75 Track Mounted

Drill Method: Hollow Stem Augers

Protective Cover: Monument Casing

		Subsurface Profile		Sar	mple				
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Dynamic Cone × Standard Penetration 20 40 60 80	Shear Strength (PP)	Water Content % 10 20 30	Groundwater Observations and Standpipe Details
0 1 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	222	Ground Surface TOPSOIL dark brown sandy silt, trace organics (300 mm) SANDY SILT loose light brown sandy silt, trace	423.9 0.0 423.6 0.3	-					Concrete
		clay, moist SILTY SAND loose dark brown silty sand, very moist	422.5 1.4 421.9		ss ss	9		•6 •13	Concret
8 10 10		SAND loose dark brown sand, some silt, \trace clay, saturated	2.0 <u>421.6</u> 2.3		SS	19		21	ntonite - nm PVC
		loose	420.9 3.0	4	SS	8		_24	Be
14 14 16 16		compact	<u>419.3</u> 4.6	5	SS	26		<b>_</b> 19	
18 18 20 20 20		SILT compact grey silt, trace clay, sand	<u>417.8</u> 6.1			11		19	Sand Pack
22-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		Drilling Terminated	<u>417.2</u> 6.7	6	SS				

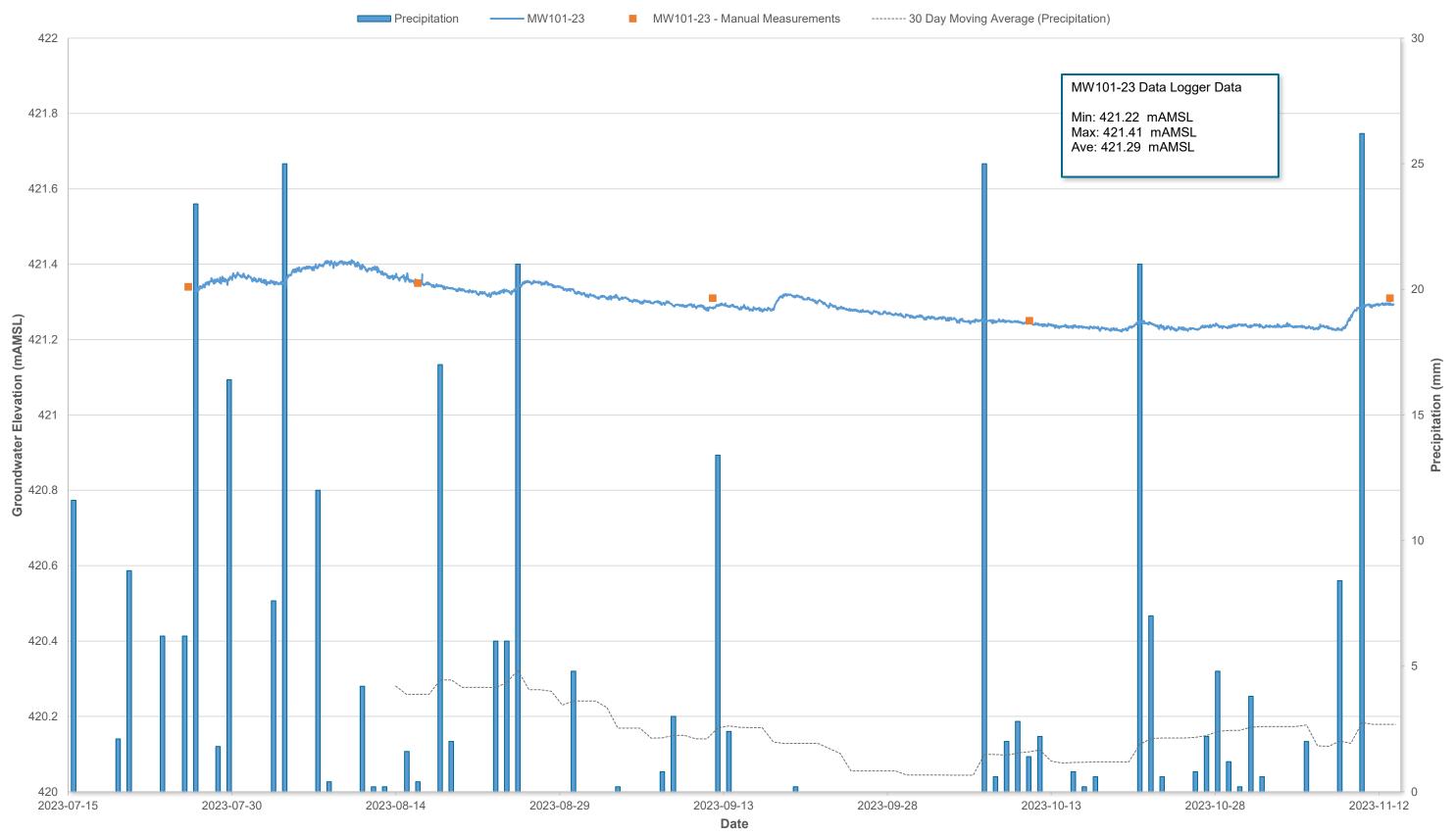
Field Technician: C. McCulla

Drafted by: A. Challis

Reviewed by: K. Rundle Drake

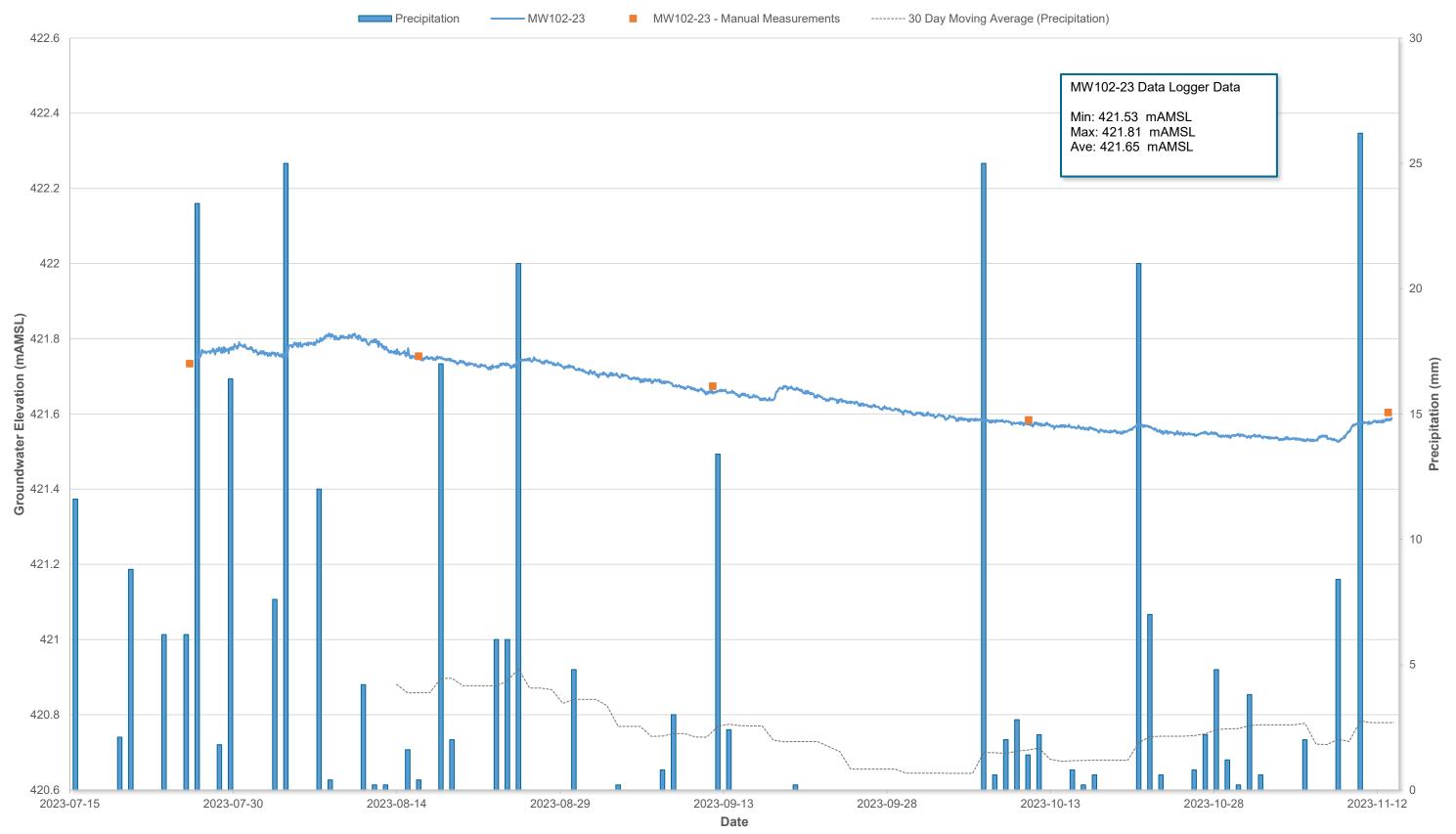


#### Notes:


Water encountered 2.0 mbgs during drilling. Water measured at 2.7 mbgs (Elevation 421.2 masl) on August 16, 2023.

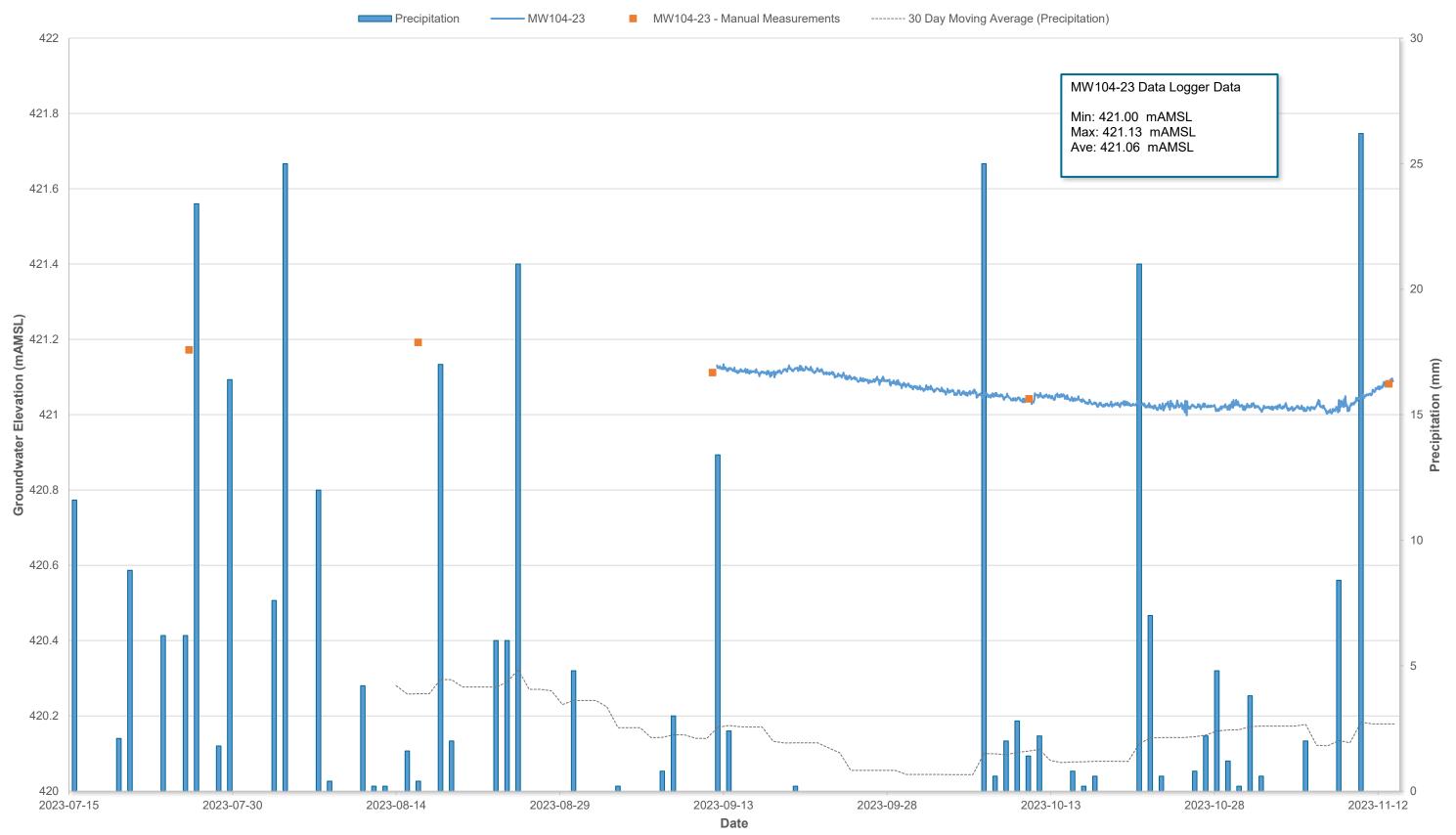
Sheet: 1 of 1




# Hydrographs






# Hydrograph 1: Groundwater Elevations (mAMSL) - MW101-23

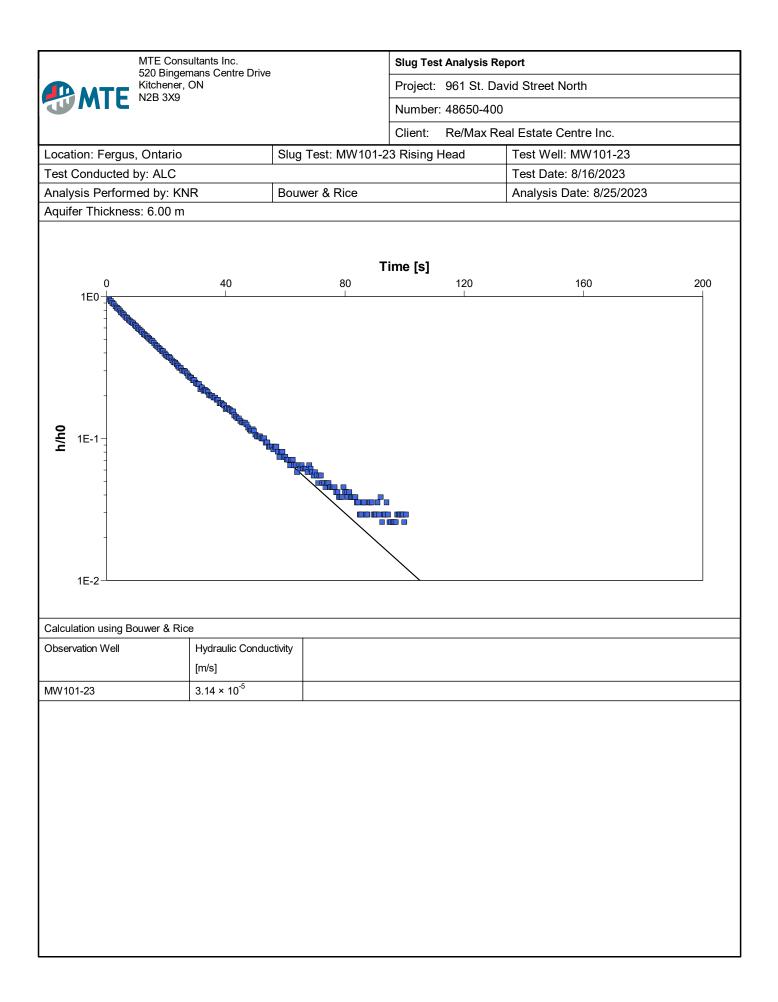




# Hydrograph 2: Groundwater Elevations (mAMSL) - MW102-23






# Hydrograph 3: Groundwater Elevations (mAMSL) - MW104-23





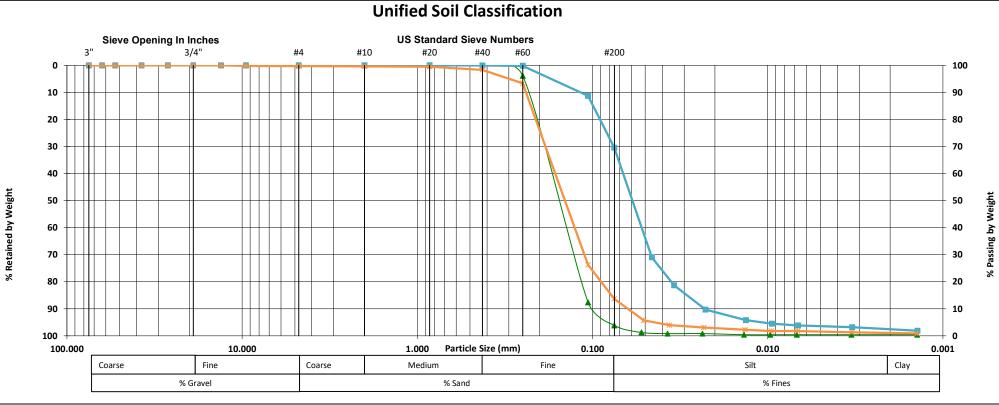
# **AquiferTest Results**










# Particle Size Distribution and Hydraulic Conductivity Estimates





Project Name: 961 St. David Street North Investigation Client: 2687734 Ontario Inc. Date Sampled: June 27, 2023 Date Tested: July 5 - July 6, 2023 MTE File No.: 48650-300 Table No: 101

**Project Location: Fergus, ON** 



Sample Depth Description Symbol Borehole ID Sample # MW101-23 SS-5 4.6-5.0 mbgs SAND, trace Silt and Clay -MW102-23 SS-5 4.6-5.0 mbgs Sandy SILT, trace Clay MW104-23 SS-5 4.6-5.0 mbgs SAND, some Silt, trace Clay



NOTES:



Well ID	Sample ID	Depth Top (m)	Depth Bottom (m)	Soil Description	Grain Size at which 10% is finer (mm)	Grain size at which 60% is finer (mm)	% passing .02mm sieve %	% passing .06mm sieve %	Soil State Description (-)	Hazen Coefficient (-)	Uniformity Index ¹ (-)	Porosity ² (-)			Hydı	raulic Condu (m/sec)	-		
					d ₁₀	d ₆₀	P ₁	P ₂	SSD	с	$C_u = d_{60}/d_{10}$	n=0.255(1+0.83 ^{Cu} )	Hazen ³	Beyer ³	Kozeny- Carmen ³	Wang ³	Kaubisch ⁴	MacDonald ^t	Geometric Mean
MW101-23	SS-5	4.6	5.0	SAND, trace Silt and Clay	0.11	0.18	1	2	2	100	1.6	0.443	1.2E-04	3.4E-04	1.5E-04	1.8E-04	N/A	4.4E-05	1.4E-04
MW102-23	SS-5	4.6	5.0	Sandy SILT, trace Clay	0.024	0.068	8	50	4	100	2.8	0.405	N/A	N/A	4.9E-06	N/A	N/A	2.3E-06	3.4E-06
MW104-23	SS-5	4.6	5.0	SAND, some Silt, trace Clay	0.065	0.17	3	9	3	100	2.6	0.412	N/A	1.1E-04	3.9E-05	6.6E-05	N/A	1.2E-05	4.3E-05

N/A The formula is not appropriate to use for grain size distribution of the sample

Hazen Formula:

Wang Et Al. Formula:

Where:

$$K = C d_{10}^{-2}$$

$$\stackrel{\text{Where:}}{\underset{\text{ K Hydraulic conductivity (cm/sec)}}{\underset{\text{ d}_{10} \text{ Grain size at which 10% is finer (cm)}}{\text{ C Coefficient as follows:}}$$

$$\stackrel{\text{Very fine sand, poorly sorted}}{\underset{\text{ Fine sand with appreciable fines}}{\underset{\text{ Medium sand, well sorted}}{\underset{\text{ Coarse sand, poorly sorted}}{\underset{\text{ S0-120}}{\underset{\text{ Coarse sand, poerly sorted}}}}$$

Applicability: where 0.1 < d₁₀ < 3.0 mm

K Hydraulic conductivity (m/sec)

g Gravitational acceleration (9.8 m/s²)

v Kinematic viscosity of water( $1.2 \times 10^{-6} \text{ m}^2/\text{s}$ ) d₁₀ Grain size at which 10% is finer (m) d₆₀ Grain size at which60% is finer (m) Beyer Formula:

$$K = 6 \times 10^{-4} \frac{g}{v} ln\left(\frac{500}{Cu}\right) d_{10}^2$$

$$\label{eq:Where:K} \begin{split} \frac{Where:}{K} & \text{Hydraulic conductivity (m/sec)} \\ & \text{g Gravitational acceleration (9.8 m/s^2)} \\ & \text{v Kinematic viscosity of water(1.2 x 10 ^6 m^2/s)} \\ & \text{d}_{10} & \text{Grain size at which 10\% is finer (m)} \end{split}$$

Applicability: where  $0.06 < d_{10} < 0.6 \text{ mm} \text{ AND } C_u <= 20$ 

Kaubisch Formula:

$$K = 10^{0.0005P_2^2 - 0.12P - 3.59}$$

Where: K Hydraulic conductivity (m/sec) P₂ percent passing .06mm sieve

Applicability: where  $5 < C_u < 400 \text{ AND } 10\% < P_2 > 60\%$ 

Kozeny-Carmen Formula:

$$K = \frac{1}{180} \frac{g}{v} \left( \frac{n^3}{(1-n)^2} \right) d_{10}^2$$

 $\label{eq:Where:K} \begin{array}{c} Where: \\ K \ Hydraulic conductivity (m/sec) \\ g \ Gravitational acceleration (9.8 m/s^2) \\ v \ Kinematic viscosity of water(1.2 \times 10^{-6} m^2/s) \\ d_{10} \ Grain size at which 10% is finer (m) \end{array}$ 

Applicability: where  $d_{10} < 3.0 \text{ mm}$  AND  $P_1 < 20\%$ 

MacDonald Formula:

$$K = 10^{0.79 \log d_{10}^{[]} + (2.1 - 0.38SSD)}$$

Where:		
К	Hydraulic conductivity (m/day)	
d ₁₀	Grain size at which 10% is finer (mm)	
SSD	Soil State Description as follows	
	Very loose, very soft	1
	Loose, soft	2
	Medium dense, medium	З
	Dense, stiff	4
	Very dense, very stiff	5

Applicability: where 0.001 < d₁₀ < 0.715 mm

¹ Craig, R.F. 1992. "Soil Mechanics, Fifth Edition". Chapman and Hill.
 ² Vukovic, M., and Soro, A. 1992. "Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition"

Applicability: where 0.05 < d₁₀ < 0.83 mm, 0.09 < d₆₀ < 4.29 mm, AND 1.3 < CU < 18.3%

 $K = 2.9 \times 10^{-3} \frac{g}{v} \left( \log \frac{g d_{60}^3}{v^2} \right)^{-1} d_{10}^2$ 

³ Duffield, G.M. "Representative Values of Hydraulic Properties" http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm

⁴ Cai, Jialiang, Taute, Thomas, Hamann, Enrico, and Schneider, Michael. 2013. " An Integratd Laboratory Method to Measure and Verify Directional Hydraulic conductivity in Fine-to-Medium Sandy Sediments". Groundwater.

⁵ MacDonald, A.M., Maurice, L., Dobbs, M.R., Reeves, H.J. & Auton, C.A. 2012. Relating in situhydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology 434–435, 130–141.



# **Laboratory Certificates of Analysis**



# **ALS Canada Ltd.**



CERTIFICATE OF ANALYSIS							
Work Order	: WT2322882	Page	: 1 of 5				
Client	: MTE Consultants Inc.	Laboratory	: ALS Environmental - Waterloo				
Contact	: Kyle Reed	Account Manager	: Emily Hansen				
Address	520 Bingemans Centre Drive	Address	: 60 Northland Road, Unit 1				
	Kitchener ON Canada N2B 3X9		Waterloo ON Canada N2V 2B8				
Telephone	: 519 743 6500	Telephone	: +1 519 886 6910				
Project	: 48650-300	Date Samples Received	: 26-Jul-2023 14:05				
PO	:	Date Analysis Commenced	: 26-Jul-2023				
C-O-C number	: 20-955728	Issue Date	: 01-Aug-2023 14:07				
Sampler	: TXG		-				
Site	:						
Quote number	: Standing Offer 2023						
No. of samples received	: 2						
No. of samples analysed	: 2						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
John Tang	Lab Analyst	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Metals, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	VOC, Waterloo, Ontario



### **General Comments**

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
µg/L	micrograms per litre
μS/cm	microsiemens per centimetre
CU	colour units (1 cu = 1 mg/l pt)
mg/L	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

#### <: less than.

#### >: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

#### Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

### **Qualifiers**

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
OWP	Organic water sample contained visible sediment (must be included as part of
	analysis). Measured concentrations of organic substances in water can be biased
	high due to presence of sediment.



# Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	MW 102-23	MW 104-23	 	
(Matrix: Water)								
			Client samp	ling date / time	26-Jul-2023 12:50	26-Jul-2023 12:35	 	
Analyte	CAS Number	Method/Lab	LOR	Unit	WT2322882-001	WT2322882-002	 	
					Result	Result	 	
Physical Tests								
Colour, apparent		E330/WT	2.0	CU	118	512 DLHC	 	
Conductivity		E100/WT	2.0	µS/cm	2440	2540	 	
Hardness (as CaCO3), from total Ca/Mg		EC100A/WT	0.50	mg/L	540	868	 	
рН		E108/WT	0.10	pH units	7.75	7.57	 	
Solids, total dissolved [TDS]		E162/WT	10	mg/L	1460 DLDS	1630 DLDS	 	
Turbidity		E121/WT	0.10	NTU	35.0	408	 	
Alkalinity, total (as CaCO3)		E290/WT	2.0	mg/L	296	327	 	
Anions and Nutrients								
Ammonia, total (as N)	7664-41-7	E298/WT	0.0050	mg/L	<0.0050	0.0236	 	
Chloride	16887-00-6	E235.CI/WT	0.50	mg/L	581 DLDS	547 DLDS	 	
Fluoride	16984-48-8	E235.F/WT	0.020	mg/L	<0.100 DLDS	<0.100 DLDS	 	
Nitrate (as N)	14797-55-8	E235.NO3/WT	0.020	mg/L	5.21 DLDS	14.1 DLDS	 	
Nitrite (as N)	14797-65-0	E235.NO2/WT	0.010	mg/L	<0.050 DLDS	<0.050 DLDS	 	
Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U/WT	0.0010	mg/L	0.0053	<0.0010	 	
Phosphorus, total	7723-14-0	E372-U/WT	0.0020	mg/L	0.0854	0.453	 	
Sulfate (as SO4)	14808-79-8	E235.SO4/WT	0.30	mg/L	23.0 DLDS	108 DLDS	 	
Total Metals								
Aluminum, total	7429-90-5	E420/WT	0.0030	mg/L	0.661 DLHC	3.65 DLHC	 	
Antimony, total	7440-36-0	E420/WT	0.00010	mg/L	<0.00100 DLHC	<0.00100 DLHC	 	
Arsenic, total	7440-38-2	E420/WT	0.00010	mg/L	<0.00100 DLHC	0.00197 DLHC	 	
Barium, total	7440-39-3	E420/WT	0.00010	mg/L	0.0762 DLHC	0.105 DLHC	 	
Beryllium, total	7440-41-7	E420/WT	0.000020	mg/L	<0.000200 DLHC	0.000201 DLHC	 	
Bismuth, total	7440-69-9	E420/WT	0.000050	mg/L	<0.000500 DLHC	<0.000500 DLHC	 	
Boron, total	7440-42-8	E420/WT	0.010	mg/L	<0.100 DLHC	<0.100 DLHC	 	
Cadmium, total	7440-43-9	E420/WT	0.0000050	mg/L	<0.0000500 DLHC	0.000112 DLHC	 	
Calcium, total	7440-70-2		0.050	mg/L	162 DLHC	268 DLHC	 	
Cesium, total	7440-46-2	E420/WT	0.000010	mg/L	<0.000100 DLHC	0.000369 DLHC	 	
Chromium, total	7440-47-3		0.00050	mg/L	<0.00500 DLHC	0.00605 DLHC	 	
Cobalt, total	7440-48-4		0.00010	mg/L	<0.00100 DLHC	0.00269 DLHC	 	
Copper, total	7440-50-8		0.00050	mg/L	<0.00500 DLHC	0.0108 DLHC	 	
			1	-		1		I I



## Analytical Results

Sub-Matrix: Water		Cl	ient sample ID	MW 102-23	MW 104-23	 	
(Matrix: Water)							
		Client samp	ling date / time	26-Jul-2023 12:50	26-Jul-2023 12:35	 	
Analyte	CAS Number Method/Lab	LOR	Unit	WT2322882-001	WT2322882-002	 	
, maryeo				Result	Result	 	
Total Metals							
Iron, total	7439-89-6 E420/WT	0.010	mg/L	1.05 DLHC	6.23 DLHC	 	
Lead, total	7439-92-1 E420/WT	0.000050	mg/L	0.00138 DLHC	0.00656 DLHC	 	
Lithium, total	7439-93-2 E420/WT	0.0010	mg/L	<0.0100 DLHC	<0.0100 DLHC	 	
Magnesium, total	7439-95-4 E420/WT	0.0050	mg/L	32.9 DLHC	48.3 DLHC	 	
Manganese, total	7439-96-5 E420/WT	0.00010	mg/L	0.0642 DLHC	0.288 DLHC	 	
Molybdenum, total	7439-98-7 E420/WT	0.000050	mg/L	<0.000500 DLHC	<0.000500 DLHC	 	
Nickel, total	7440-02-0 E420/WT	0.00050	mg/L	<0.00500 DLHC	0.00934 DLHC	 	
Phosphorus, total	7723-14-0 E420/WT	0.050	mg/L	<0.500 DLHC	0.592 DLHC	 	
Potassium, total	7440-09-7 E420/WT	0.050	mg/L	2.41 DLHC	4.06 DLHC	 	
Rubidium, total	7440-17-7 E420/WT	0.00020	mg/L	<0.00200 DLHC	0.00550 DLHC	 	
Selenium, total	7782-49-2 E420/WT	0.000050	mg/L	<0.000500 DLHC	<0.000500 DLHC	 	
Silicon, total	7440-21-3 E420/WT	0.10	mg/L	6.86 DLHC	10.9 DLHC	 	
Silver, total	7440-22-4 E420/WT	0.000010	mg/L	<0.000100 DLHC	<0.000100 DLHC	 	
Sodium, total	7440-23-5 E420/WT	0.050	mg/L	314 DLHC	295 DLHC	 	
Strontium, total	7440-24-6 E420/WT	0.00020	mg/L	0.355 DLHC	0.615 DLHC	 	
Sulfur, total	7704-34-9 E420/WT	0.50	mg/L	7.54 DLHC	38.1 DLHC	 	
Tellurium, total	13494-80-9 E420/WT	0.00020	mg/L	<0.00200 DLHC	<0.00200 DLHC	 	
Thallium, total	7440-28-0 E420/WT	0.000010	mg/L	<0.000100 DLHC	<0.000100 DLHC	 	
Thorium, total	7440-29-1 E420/WT	0.00010	mg/L	<0.00100 DLHC	0.00141 DLHC	 	
Tin, total	7440-31-5 E420/WT	0.00010	mg/L	<0.00100 DLHC	<0.00100 DLHC	 	
Titanium, total	7440-32-6 E420/WT	0.00030	mg/L	0.0282 DLHC	0.144 DLHC	 	
Tungsten, total	7440-33-7 E420/WT	0.00010	mg/L	<0.00100 DLHC	<0.00100 DLHC	 	
Uranium, total	7440-61-1 E420/WT	0.000010	mg/L	0.000434 DLHC	0.000752 DLHC	 	
Vanadium, total	7440-62-2 E420/WT	0.00050	mg/L	<0.00500 DLHC	0.00799 DLHC	 	
Zinc, total	7440-66-6 E420/WT	0.0030	mg/L	<0.0300 DLHC	<0.0300 DLHC	 	
Zirconium, total	7440-67-7 E420/WT	0.00020	mg/L	<0.00200 DLHC	0.00222 DLHC	 	
Volatile Organic Compounds							
Benzene	71-43-2 E611A/WT	0.50	μg/L	<0.50	<0.50 ^{OWP}	 	
Ethylbenzene	100-41-4 E611A/WT	0.50	µg/L	<0.50	<0.50 ^{OWP}	 	
Toluene	108-88-3 E611A/WT	0.50	μg/L	<0.50	<0.50 ^{OWP}	 	
Xylene, m+p-	179601-23-1 E611A/WT	0.40	µg/L	<0.40	<0.40 ^{OWP}	 	



## Analytical Results

Sub-Matrix: Water		C	lient sample ID	MW 102-23	MW 104-23	 	
(Matrix: Water)							
		Client sam	oling date / time	26-Jul-2023 12:50	26-Jul-2023 12:35	 	
Analyte	CAS Number Method	/Lab LOR	Unit	WT2322882-001	WT2322882-002	 	
				Result	Result	 	
Volatile Organic Compounds							
Xylene, o-	95-47-6 E611A/WT	0.30	µg/L	<0.30	<0.30 OWP	 	
Xylenes, total	1330-20-7 E611A/WT	0.50	µg/L	<0.50	<0.50	 	
BTEX, total	E611A/WT	1.0	µg/L	<1.0	<1.0	 	
Hydrocarbons							
F1 (C6-C10)	E581.F1-L/W	T 25	µg/L	<25	<25 ^{OWP}	 	
F2 (C10-C16)	E601.SG/WT	100	µg/L	<100	<100	 	
F3 (C16-C34)	E601.SG/WT	250	µg/L	<250	<250	 	
F4 (C34-C50)	E601.SG/WT	250	µg/L	<250	<250	 	
F1-BTEX	EC580/WT	25	µg/L	<25	<25	 	
Hydrocarbons, total (C6-C50)	EC581SG/WT	Г 240	µg/L	<370	<370	 	
Chromatogram to baseline at nC50	_{n/a} E601.SG/WT	-	-	YES	YES	 	
Hydrocarbons Surrogates							
Bromobenzotrifluoride, 2- (F2-F4 surrogate)	392-83-6 E601.SG/WT	1.0	%	81.9	83.8	 	
Dichlorotoluene, 3,4-	95-75-0 E581.F1-L/W	T 1.0	%	94.4	90.4	 	
Volatile Organic Compounds Surrogates							-
Bromofluorobenzene, 4-	460-00-4 E611A/WT	1.0	%	88.1	89.4	 	
Difluorobenzene, 1,4-	540-36-3 E611A/WT	1.0	%	98.2	97.2	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.



# QUALITY CONTROL INTERPRETIVE REPORT

Work Order	WT2322882	Page	: 1 of 13
Client	MTE Consultants Inc.	Laboratory	: ALS Environmental - Waterloo
Contact	: Kyle Reed	Account Manager	: Emily Hansen
Address	: 520 Bingemans Centre Drive	Address	: 60 Northland Road, Unit 1
	Kitchener ON Canada N2B 3X9		Waterloo, Ontario Canada N2V 2B8
Telephone	: 519 743 6500	Telephone	: +1 519 886 6910
Project	:48650-300	Date Samples Received	: 26-Jul-2023 14:05
PO	:	Issue Date	: 01-Aug-2023 14:08
C-O-C number	: 20-955728		
Sampler	: TXG		
Site	:		
Quote number	: Standing Offer 2023		
No. of samples received	:2		
No. of samples analysed	:2		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

#### Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

#### Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

### Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

#### **Outliers: Reference Material (RM) Samples**

• No Reference Material (RM) Sample outliers occur.

# Outliers : Analysis Holding Time Compliance (Breaches) • • No Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.



**Outliers : Quality Control Samples** Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-1058349-001		Magnesium, total	7439-95-4	E420	0.0096 ^B mg/L	0.005 mg/L	Blank result exceeds permitted value
<b>Result Qualifiers</b> Qualifier	Description			I			1	
B Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times								

blank level are considered reliable.



# Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

atrix: Water					E٧	aluation: × =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Inalyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP] MW 102-23	E298	26-Jul-2023	27-Jul-2023	28 days	1 days	✓	27-Jul-2023	27 days	0 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) [ON MECP] MW 104-23	E298	26-Jul-2023	27-Jul-2023	28 days	1 days	4	27-Jul-2023	27 days	0 days	4
nions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] MW 102-23	E235.CI	26-Jul-2023	28-Jul-2023	28 days	2 days	√	31-Jul-2023	26 days	3 days	√
nions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] MW 104-23	E235.CI	26-Jul-2023	28-Jul-2023	28 days	2 days	4	31-Jul-2023	26 days	3 days	4
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel 0.001									
HDPE [ON MECP] MW 102-23	E378-U	26-Jul-2023	27-Jul-2023	7 days	1 days	✓	27-Jul-2023	6 days	0 days	~
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	evel 0.001									
HDPE [ON MECP] MW 104-23	E378-U	26-Jul-2023	27-Jul-2023	7 days	1 days	~	27-Jul-2023	6 days	0 days	4



Matrix: Water					E١	aluation: × =	Holding time exce	edance ; 🕶	<pre>/ = Within</pre>	Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
MW 102-23	E235.F	26-Jul-2023	28-Jul-2023	28	2 days	1	31-Jul-2023	26 days	3 days	1
				days						
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
MW 104-23	E235.F	26-Jul-2023	28-Jul-2023	28	2 days	1	31-Jul-2023	26 days	3 days	✓
				days						
Anions and Nutrients : Nitrate in Water by IC				-						
HDPE [ON MECP]	I									
MW 102-23	E235.NO3	26-Jul-2023	28-Jul-2023	7 days	2 days	1	31-Jul-2023	5 days	3 days	1
				,	,				. ,	
Antone and Nutriante - Nitrate in Meter by 10										
Anions and Nutrients : Nitrate in Water by IC HDPE [ON MECP]										
MW 104-23	E235.NO3	26-Jul-2023	28-Jul-2023	7 days	2 days	1	31-Jul-2023	5 days	3 days	1
10104-23	E233.N03	20-30-2023	20-Jui-2023	1 uays	2 uays	•	51-501-2025	Juays	5 uays	•
Anions and Nutrients : Nitrite in Water by IC							1			
HDPE [ON MECP]	<b>E005 NO0</b>		00 101 0000	7	O davia	,	24 101 2022	E davia	0	1
MW 102-23	E235.NO2	26-Jul-2023	28-Jul-2023	7 days	2 days	1	31-Jul-2023	5 days	3 days	•
Anions and Nutrients : Nitrite in Water by IC				_						
HDPE [ON MECP]										_
MW 104-23	E235.NO2	26-Jul-2023	28-Jul-2023	7 days	2 days	1	31-Jul-2023	5 days	3 days	1
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
MW 102-23	E235.SO4	26-Jul-2023	28-Jul-2023	28	2 days	1	31-Jul-2023	26 days	3 days	1
				days						
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
MW 104-23	E235.SO4	26-Jul-2023	28-Jul-2023	28	2 days	✓	31-Jul-2023	26 days	3 days	1
				days						
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002	2 mg/l )						1			
Amber glass total (sulfuric acid) [ON MECP]										
MW 102-23	E372-U	26-Jul-2023	27-Jul-2023	28	1 days	1	28-Jul-2023	27 days	1 davs	~
				days					,0	
				uays						



Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)		, ,	Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	r Times Actual	Eval
nions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) [ON MECP] MW 104-23	E372-U	26-Jul-2023	27-Jul-2023	28 days	1 days	4	28-Jul-2023	27 days	1 days	1
lydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate) MW 102-23	E581.F1-L	26-Jul-2023	27-Jul-2023	14 days	1 days	4	27-Jul-2023	13 days	0 days	*
lydrocarbons : CCME PHC - F1 by Headspace GC-FID (Low Level)										
Glass vial (sodium bisulfate) MW 104-23	E581.F1-L	26-Jul-2023	27-Jul-2023	14 days	1 days	4	27-Jul-2023	13 days	0 days	*
lydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] MW 102-23	E601.SG	26-Jul-2023	26-Jul-2023	40 days	0 days	v	27-Jul-2023	40 days	1 days	4
lydrocarbons : Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) [ON MECP] MW 104-23	E601.SG	26-Jul-2023	26-Jul-2023	40 days	0 days	1	27-Jul-2023	40 days	1 days	~
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP] MW 102-23	E290	26-Jul-2023	28-Jul-2023	14 days	2 days	¥	28-Jul-2023	12 days	0 days	1
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP] MW 104-23	E290	26-Jul-2023	28-Jul-2023	14 days	2 days	4	28-Jul-2023	12 days	0 days	~
Physical Tests : Colour (Apparent) by Spectrometer										
HDPE [ON MECP] MW 102-23	E330	26-Jul-2023					27-Jul-2023	48 hrs	24 hrs	1
hysical Tests : Colour (Apparent) by Spectrometer										
HDPE [ON MECP] MW 104-23	E330	26-Jul-2023					27-Jul-2023	48 hrs	24 hrs	~



latrix: Water Analyte Group	Method	Sampling Date	Fx	traction / Pi			Holding time exce	Analys		<u> </u>
Container / Client Sample ID(s)	Method	Sampling Date	Preparation		g Times	Eval	Analysis Date	· · · · ·	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
MW 102-23	E100	26-Jul-2023	28-Jul-2023	28 days	2 days	~	28-Jul-2023	26 days	0 days	1
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
MW 104-23	E100	26-Jul-2023	28-Jul-2023	28 days	2 days	1	28-Jul-2023	26 days	0 days	1
hysical Tests : pH by Meter										
HDPE [ON MECP]										
MW 102-23	E108	26-Jul-2023	28-Jul-2023	14	2 days	1	28-Jul-2023	12 days	0 days	1
				days						
Physical Tests : pH by Meter										
HDPE [ON MECP]										
MW 104-23	E108	26-Jul-2023	28-Jul-2023	14	2 days	1	28-Jul-2023	12 days	0 days	1
				days						
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
MW 102-23	E162	26-Jul-2023					28-Jul-2023	7 days	2 days	~
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
MW 104-23	E162	26-Jul-2023					28-Jul-2023	7 days	2 days	1
hysical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
MW 102-23	E121	26-Jul-2023					27-Jul-2023	48 hrs	20 hrs	1
Physical Tests : Turbidity by Nephelometry										
HDPE [ON MECP]										
MW 104-23	E121	26-Jul-2023					27-Jul-2023	48 hrs	20 hrs	1
otal Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
MW 102-23	E420	26-Jul-2023	27-Jul-2023	180	1 days	1	27-Jul-2023	179	0 days	~
				days				days		



#### Matrix: Water Evaluation: $\mathbf{x}$ = Holding time exceedance ; $\mathbf{v}$ = Within Holding Time Extraction / Preparation Analysis Analyte Group Sampling Date Method Container / Client Sample ID(s) Eval Preparation Holding Times Eval Analysis Date Holding Times Actual Rec Actual Rec Date Total Metals : Total metals in Water by CRC ICPMS HDPE total (nitric acid) MW 104-23 E420 26-Jul-2023 27-Jul-2023 1 days 1 27-Jul-2023 0 days 1 180 179 days days Volatile Organic Compounds : BTEX by Headspace GC-MS Glass vial (sodium bisulfate) 1 1 MW 102-23 E611A 26-Jul-2023 27-Jul-2023 14 1 days 27-Jul-2023 13 days 0 days days Volatile Organic Compounds : BTEX by Headspace GC-MS Glass vial (sodium bisulfate) MW 104-23 E611A 26-Jul-2023 27-Jul-2023 1 days ✓ 27-Jul-2023 13 days 0 days ✓ 14 days

#### Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page	:	9 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



# **Quality Control Parameter Frequency Compliance**

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type				ency outside spe ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)	in other	QU LUT II			, lotadi	Expected	
Alkalinity Species by Titration	F200	1060384	1	14	7.1	5.0	
Ammonia by Fluorescence	E290 E298	1058241	1	20	5.0	5.0	<u> </u>
BTEX by Headspace GC-MS		1058848	1	18	5.5	5.0	<u> </u>
CCME PHC - F1 by Headspace GC-FID (Low Level)	E611A	1058847	1	10	5.2	5.0	<u> </u>
Chloride in Water by IC	E581.F1-L		1	19	10.0	5.0	<u> </u>
Colour (Apparent) by Spectrometer	E235.Cl	1060388 1058987	1	10	5.2	5.0	<u> </u>
	E330						<u> </u>
Conductivity in Water	E100	1060385	1	8	12.5	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	1058139	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1060390	1	11	9.0	5.0	<u>√</u>
Nitrate in Water by IC	E235.NO3	1060386	1	13	7.6	5.0	✓
Nitrite in Water by IC	E235.NO2	1060387	1	12	8.3	5.0	✓
oH by Meter	E108	1060383	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1060389	1	8	12.5	5.0	
TDS by Gravimetry	E162	1061115	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1058349	0	14	0.0	5.0	<b>3</b> £
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1058240	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	1058243	1	7	14.2	5.0	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	1060384	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	1058241	1	20	5.0	5.0	~
BTEX by Headspace GC-MS	E611A	1058848	1	18	5.5	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1058847	1	19	5.2	5.0	1
Chloride in Water by IC	E235.Cl	1060388	1	10	10.0	5.0	✓
Colour (Apparent) by Spectrometer	E330	1058987	1	19	5.2	5.0	1
Conductivity in Water	E100	1060385	1	8	12.5	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	1058139	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	1060390	1	11	9.0	5.0	
Nitrate in Water by IC	E235.NO3	1060386	1	13	7.6	5.0	
Nitrite in Water by IC	E235.NO2	1060387	1	12	8.3	5.0	
pH by Meter	E108	1060383	1	20	5.0	5.0	
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1057933	1	20	5.0	5.0	 ✓
Sulfate in Water by IC	E235.SO4	1060389	1	8	12.5	5.0	 ✓
TDS by Gravimetry	E162	1061115	1	20	5.0	5.0	 ✓
Total metals in Water by CRC ICPMS	E 102	1058349	1	14	7.1	5.0	 ✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E420	1058240	1	20	5.0	5.0	 ✓
Turbidity by Nephelometry	E121	1058243	1	7	14.2	5.0	 

Page :	10 of 13
Work Order :	WT2322882
Client :	MTE Consultants Inc.
Project :	48650-300



Quality Control Sample Type			ion: × = QC freque	ount		Frequency (%	
	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Analytical Methods	Weinou	QC LOI #	40	rtegular	Actual	Lapecieu	Evaluation
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1060384	1	14	7.1	5.0	✓
Ammonia by Fluorescence	E298	1058241	1	20	5.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1058848	1	18	5.5	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1058847	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.Cl	1060388	1	10	10.0	5.0	✓
Colour (Apparent) by Spectrometer	E330	1058987	1	19	5.2	5.0	$\checkmark$
Conductivity in Water	E100	1060385	1	8	12.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	1058139	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1060390	1	11	9.0	5.0	✓
Nitrate in Water by IC	E235.NO3	1060386	1	13	7.6	5.0	✓
Nitrite in Water by IC	E235.NO2	1060387	1	12	8.3	5.0	✓
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG	1057933	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	1060389	1	8	12.5	5.0	✓
TDS by Gravimetry	E162	1061115	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	1058349	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1058240	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	1058243	1	7	14.2	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	1058241	1	20	5.0	5.0	✓
BTEX by Headspace GC-MS	E611A	1058848	1	18	5.5	5.0	✓
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L	1058847	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.Cl	1060388	1	10	10.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	1058139	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	1060390	1	11	9.0	5.0	✓
Nitrate in Water by IC	E235.NO3	1060386	1	13	7.6	5.0	✓
Nitrite in Water by IC	E235.NO2	1060387	1	12	8.3	5.0	✓
Sulfate in Water by IC	E235.SO4	1060389	1	8	12.5	5.0	~
Total metals in Water by CRC ICPMS	E420	1058349	1	14	7.1	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	1058240	1	20	5.0	5.0	1



# Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Waterloo			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
				at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	Waterloo	Water	APHA 2130 B (mod)	Truckidik, is assessed by the probability that we that he measuring the interview of links
rubidity by Nephelometry	E121	vvaler	APHA 2130 B (1100)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	ALS Environmental -			
	Waterloo			
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,
	ALS Environmental -			with gravimetric measurement of the residue.
	Waterloo			
Chloride in Water by IC	E235.Cl	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Waterloo			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	ALS Environmental -			alkalinity values.
	Waterloo			· · · · · · · · · · · · · · · · · · ·

Page Work Order	:	12 of 13 WT2322882
Client Project	:	MTE Consultants Inc. 48650-300



Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Ammonia by Fluorescence	E298 ALS Environmental - Waterloo	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Colour (Apparent) by Spectrometer	E330 ALS Environmental - Waterloo	Water	APHA 2120 C (mod)	Colour (Apparent) is measured in an unfiltered sample spectrophotometrically using the single wavelength method. The colour contribution of settleable solids are not included in the result. This method is intended for potable waters. Colour measurements can be highly pH dependent, and apply to the pH of the sample as received (at time of testing), without pH adjustment.
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U ALS Environmental - Waterloo	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U ALS Environmental - Waterloo	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total metals in Water by CRC ICPMS	E420 ALS Environmental - Waterloo	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
CCME PHC - F1 by Headspace GC-FID (Low Level)	E581.F1-L ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1 (mod)	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law. Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
Silica Gel Treated CCME PHCs - F2-F4sg by GC-FID	E601.SG ALS Environmental - Waterloo	Water	CCME PHC in Soil - Tier 1 (mod)	Sample extracts are subjected to in-situ silica gel treatment prior to analysis by GC-FID for CCME hydrocarbon fractions (F2-F4). Analytical methods for CCME Petroleum Hydrocarbons (PHCs) are validated to comply fully with the Reference Method for the Canada-Wide Standard for PHC. Unless qualified, all required quality control criteria of the CCME PHC method have been met, including response factor and linearity requirements.
BTEX by Headspace GC-MS	E611A ALS Environmental - Waterloo	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.

Page Work Order	:	13 of 13 WT2322882
Client Project	:	MTE Consultants Inc. 48650-300



Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and
				Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially
	Waterloo			calculated from dissolved Calcium and Magnesium concentrations, because it is a
				property of water due to dissolved divalent cations. Hardness from total Ca/Mg is
				normally comparable to Dissolved Hardness in non-turbid waters.
F1-BTEX	EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
			1	ethylbenzene and xylenes (BTEX).
	ALS Environmental -			
	Waterloo			
SUM F1 to F4 where F2-F4 is SG treated	EC581SG	Water	CCME PHC in Soil - Tier	Hydrocarbons, total (C6-C50) is the sum of CCME Fraction F1(C6-C10), F2(C10-C16),
			1	F3(C16-C34), and F4(C34-C50), where F2-F4 have been treated with silica gel. F4G-sg
	ALS Environmental -			is not used within this calculation due to overlap with other fractions.
	Waterloo			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	ALS Environmental -			
	Waterloo			
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	ALS Environmental -			
	Waterloo			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
· · · · · · · · · · · · · · · · · · ·	El Sol			headspace autosampler. An aliguot of the headspace is then injected into the
	ALS Environmental -			GC/MS-FID system.
	Waterloo			Co/Mo-r ib system.
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
				extracted using a hexane liquid-liquid extraction.
	ALS Environmental -			
	Waterloo			

# ALS Canada Ltd.



# QUALITY CONTROL REPORT

Work Order	WT2322882	Page	: 1 of 13
Client	: MTE Consultants Inc.	Laboratory	: ALS Environmental - Waterloo
Contact	: Kyle Reed	Account Manager	: Emily Hansen
Address	: 520 Bingemans Centre Drive Kitchener ON Canada N2B 3X9	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	:	Telephone	: +1 519 886 6910
Project	: 48650-300	Date Samples Received	: 26-Jul-2023 14:05
PO	:	Date Analysis Commenced	: 26-Jul-2023
C-O-C number	: 20-955728	Issue Date	:01-Aug-2023 14:07
Sampler	: TXG 519 743 6500		
Site	:		
Quote number	: Standing Offer 2023		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
John Tang	Lab Analyst	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Production Manager, Environmental	Waterloo Metals, Waterloo, Ontario
Sarah Birch	VOC Section Supervisor	Waterloo VOC, Waterloo, Ontario

Page :	2 of 13
Work Order :	WT2322882
Client :	MTE Consultants Inc.
Project :	48650-300



#### **General Comments**

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

# = Indicates a QC result that did not meet the ALS DQO.

#### Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page	:	3 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



#### Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1058243)										
WT2322795-005	Anonymous	Turbidity		E121	0.10	NTU	0.11	0.11	0.003	Diff <2x LOR	
Physical Tests (QC	Lot: 1058987)										
HA2300429-001	Anonymous	Colour, apparent		E330	4.0	CU	316	313	0.937%	20%	
Physical Tests (QC	Lot: 1060383)										
WT2322844-002	Anonymous	рН		E108	0.10	pH units	8.16	8.17	0.122%	4%	
Physical Tests (QC	Lot: 1060384)										
WT2322844-002	Anonymous	Alkalinity, total (as CaCO3)		E290	2.0	mg/L	89.4	87.4	2.31%	20%	
Physical Tests (QC	Lot: 1060385)						1				
WT2322844-002	Anonymous	Conductivity		E100	2.0	μS/cm	805	805	0.00%	10%	
Physical Tests (QC	Lot: 1061115)										
HA2300435-003	Anonymous	Solids, total dissolved [TDS]		E162	20	mg/L	190	196	6	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1058139)										
WT2322605-002	Anonymous	Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0026	0.0027	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1058240)										
WT2322556-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0252	0.0265	4.98%	20%	
Anions and Nutrien	ts (QC Lot: 1058241)										
HA2300428-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	0.500	mg/L	20.0	20.1	0.256%	20%	
Anions and Nutrien	ts (QC Lot: 1060386)										
WT2322846-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.147	0.146	0.0009	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1060387)										
WT2322846-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 1060388)										
WT2322846-001	Anonymous	Chloride	16887-00-6	E235.CI	0.50	mg/L	129	128	0.148%	20%	
Anions and Nutrien	ts (QC Lot: 1060389)										
WT2322846-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	39.2	39.0	0.402%	20%	
Anions and Nutrien	ts (QC Lot: 1060390)										
WT2322846-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.186	0.184	0.002	Diff <2x LOR	
Volatile Organ <u>ic Co</u>	mpounds (QC Lot: 105	3848)					<u> </u>		I		
BF2300165-001	Anonymous	Benzene	71-43-2	E611A	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	E611A	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	

Page :	4 of 13
Work Order :	WT2322882
Client :	MTE Consultants Inc.
Project :	48650-300



Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Compounds (QC Lot: 1058848) - continued											
BF2300165-001	Anonymous	Toluene	108-88-3	E611A	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, m+p-	179601-23-1	E611A	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		Xylene, o-	95-47-6	E611A	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC Lot: 1058847)											
BF2300165-001	Anonymous	F1 (C6-C10)		E581.F1-L	25	μg/L	<25	<25	0	Diff <2x LOR	

Page	:	5 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



## Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

ub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 1058243)						
Turbidity		E121	0.1	NTU	<0.10	
hysical Tests (QCLot: 1058987)						
Colour, apparent		E330	2	CU	<2.0	
hysical Tests (QCLot: 1060384)						
Alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Physical Tests (QCLot: 1060385)						
Conductivity		E100	1	μS/cm	1.0	
hysical Tests (QCLot: 1061115)						
Solids, total dissolved [TDS]		E162	10	mg/L	<10	
nions and Nutrients (QCLot: 1058139)						
Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 1058240)					1 1	
Phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
nions and Nutrients (QCLot: 1058241)						
Ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 1060386)						
Nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 1060387)						
Nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 1060388)						
Chloride	16887-00-6	E235.Cl	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 1060389)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 1060390)						
Fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
otal Metals (QCLot: 1058349)						
Aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
Antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
Beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9	F420	0.00005	mg/L	<0.000050	

Page	:	6 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



#### Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 1058349) - c	ontinued					
Boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
Cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
Calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
Cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4	E420	0.005	mg/L	# 0.0096	В
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
Silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Volatile Organic Compounds (QC	Lot: 1058848)					
Benzene	71-43-2	E611A	0.5	µg/L	<0.50	

Page	:	7 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



#### Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier	
Volatile Organic Compounds (QCL	ot: 1058848) - continued						
Ethylbenzene	100-41-4	E611A	0.5	µg/L	<0.50		
Toluene	108-88-3	E611A	0.5	µg/L	<0.50		
Xylene, m+p-	179601-23-1	E611A	0.4	µg/L	<0.40		
Xylene, o-	95-47-6	E611A	0.3	µg/L	<0.30		
Hydrocarbons (QCLot: 1057933)							
F2 (C10-C16)		E601.SG	100	µg/L	<100		
F3 (C16-C34)		E601.SG	250	µg/L	<250		
F4 (C34-C50)		E601.SG	250	µg/L	<250		
Hydrocarbons (QCLot: 1058847)	lydrocarbons (QCLot: 1058847)						
F1 (C6-C10)		E581.F1-L	25	µg/L	<25		

## Qualifiers

Qualifier

В

# Description

Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.



# Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
			Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 1058243)										
Turbidity	E121	0.1	NTU	200 NTU	97.0	85.0	115			
Physical Tests (QCLot: 1058987)										
Colour, apparent	E330	2	CU	25 CU	111	70.0	130			
Physical Tests (QCLot: 1060383)										
рН	E108		pH units	7 pH units	100	98.0	102			
Physical Tests (QCLot: 1060384)										
Alkalinity, total (as CaCO3)	E290	1	mg/L	150 mg/L	110	85.0	115			
Physical Tests (QCLot: 1060385)										
Conductivity	E100	1	μS/cm	1409 µS/cm	102	90.0	110			
Physical Tests (QCLot: 1061115)										
Solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	100	85.0	115			
Anions and Nutrients (QCLot: 1058139)										
Phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.0212 mg/L	92.3	80.0	120			
Anions and Nutrients (QCLot: 1058240)										
Phosphorus, total	7723-14-0 E372-U	0.002	mg/L	0.845 mg/L	98.7	80.0	120			
Anions and Nutrients (QCLot: 1058241)				1						
Ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	97.4	85.0	115			
Anions and Nutrients (QCLot: 1060386)		0.00				00.0	110	1		
Nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	2.5 mg/L	99.4	90.0	110			
Anions and Nutrients (QCLot: 1060387)		0.01	m~//	0.5 "	00.0	00.0	110			
Nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	0.5 mg/L	98.6	90.0	110			
Anions and Nutrients (QCLot: 1060388)	16887-00-6 E235.Cl	0.5	ma/l	100 //	00.0	90.0	110			
	10887-00-0 E235.CI	0.5	mg/L	100 mg/L	99.6	90.0	110			
Anions and Nutrients (QCLot: 1060389) Sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110			
	14000-79-0 2255.504	0.0	ilig/L	100 mg/L	100	50.0	110			
Anions and Nutrients (QCLot: 1060390) Fluoride	16984-48-8 E235.F	0.02	mg/L	1 mg/l	101	90.0	110			
	10004-40-012200.1	0.02	ilig/E	1 mg/L	101	50.0	110			
Total Metals (QCLot: 1058349)							100			
Aluminum, total	7429-90-5 E420	0.003	mg/L	0.1 mg/L	102	80.0	120			
Antimony, total	7440-36-0 E420	0.0001	mg/L	0.05 mg/L	107	80.0	120			

Page	1	9 of 13
Work Order	11	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
						Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 1058349) - conti	nued										
Arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	109	80.0	120			
Barium, total	7440-39-3	E420	0.0001	mg/L	0.0125 mg/L	106	80.0	120			
Beryllium, total	7440-41-7	E420	0.00002	mg/L	0.005 mg/L	110	80.0	120			
Bismuth, total	7440-69-9	E420	0.00005	mg/L	0.05 mg/L	104	80.0	120			
Boron, total	7440-42-8	E420	0.01	mg/L	0.05 mg/L	102	80.0	120			
Cadmium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	104	80.0	120			
Calcium, total	7440-70-2	E420	0.05	mg/L	2.5 mg/L	104	80.0	120			
Cesium, total	7440-46-2	E420	0.00001	mg/L	0.0025 mg/L	109	80.0	120			
Chromium, total	7440-47-3	E420	0.0005	mg/L	0.0125 mg/L	106	80.0	120			
Cobalt, total	7440-48-4	E420	0.0001	mg/L	0.0125 mg/L	104	80.0	120			
Copper, total	7440-50-8	E420	0.0005	mg/L	0.0125 mg/L	103	80.0	120			
ron, total	7439-89-6	E420	0.01	mg/L	0.05 mg/L	104	80.0	120			
ead, total	7439-92-1	E420	0.00005	mg/L	0.025 mg/L	106	80.0	120			
ithium, total	7439-93-2	E420	0.001	mg/L	0.0125 mg/L	106	80.0	120			
/lagnesium, total	7439-95-4	E420	0.005	mg/L	2.5 mg/L	111	80.0	120			
Manganese, total	7439-96-5	E420	0.0001	mg/L	0.0125 mg/L	107	80.0	120			
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.0125 mg/L	104	80.0	120			
lickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	103	80.0	120			
Phosphorus, total	7723-14-0	E420	0.05	mg/L	0.5 mg/L	110	80.0	120			
Potassium, total	7440-09-7	E420	0.05	mg/L	2.5 mg/L	109	80.0	120			
Rubidium, total	7440-17-7	E420	0.0002	mg/L	0.005 mg/L	110	80.0	120			
Selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	103	80.0	120			
Silicon, total	7440-21-3	E420	0.1	mg/L	0.5 mg/L	107	80.0	120			
Silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	100	80.0	120			
Sodium, total	7440-23-5	E420	0.05	mg/L	2.5 mg/L	109	80.0	120			
Strontium, total	7440-24-6	E420	0.0002	mg/L	0.0125 mg/L	106	80.0	120			
Sulfur, total	7704-34-9	E420	0.5	mg/L	2.5 mg/L	105	80.0	120			
Fellurium, total	13494-80-9		0.0002	mg/L	0.005 mg/L	103	80.0	120			
Fhallium, total	7440-28-0		0.00001	mg/L	0.05 mg/L	106	80.0	120			
Thorium, total	7440-29-1	E420	0.0001	mg/L	0.005 mg/L	104	80.0	120			
Tin, total	7440-31-5		0.0001	mg/L	0.025 mg/L	106	80.0	120			
Titanium, total	7440-32-6		0.0003	mg/L	0.0125 mg/L	100	80.0	120			
Tungsten, total	7440-33-7	E420	0.0001	mg/L	0.005 mg/L	104	80.0	120			
Jranium, total	7440-61-1		0.00001	mg/L	0.00025 mg/L	109	80.0	120			
Vanadium, total	7440-62-2		0.0005	mg/L	0.025 mg/L	106	80.0	120			
Zinc, total	7440-66-6		0.003	mg/L	0.025 mg/L	105	80.0	120			
	7-00-00-0		0.000		0.023 mg/L	100	00.0	120			

Page	:	10 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	bike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number Met	thod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 1058349) - contin	nued									
Zirconium, total	7440-67-7 E42	20	0.0002	mg/L	0.005 mg/L	108	80.0	120		
Volatile Organic Compounds (QCLot:										
Benzene	71-43-2 E61	11A	0.5	µg/L	100 µg/L	97.5	70.0	130		
Ethylbenzene	100-41-4 E61	11A	0.5	µg/L	100 µg/L	95.4	70.0	130		
Toluene	108-88-3 E61	11A	0.5	µg/L	100 µg/L	97.5	70.0	130		
Xylene, m+p-	179601-23-1 E61	11A	0.4	µg/L	200 µg/L	98.1	70.0	130		
Xylene, o-	95-47-6 E61	11A	0.3	µg/L	100 µg/L	100	70.0	130		
Hydrocarbons (QCLot: 1057933)										
F2 (C10-C16)	E60	)1.SG	100	µg/L	3685.12 µg/L	106	70.0	130		
F3 (C16-C34)	E60	01.SG	250	µg/L	7481.33 µg/L	110	70.0	130		
F4 (C34-C50)	E60	01.SG	250	µg/L	4274.88 µg/L	104	70.0	130		
Hydrocarbons (QCLot: 1058847)										
F1 (C6-C10)	E58	31.F1-L	25	µg/L	2000 µg/L	99.2	80.0	120		



### Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
			Sp	Spike Recovery (%		Recovery Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	ients (QCLot: 1058139)									
WT2322605-002	Anonymous	Phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0195 mg/L	0.0196 mg/L	99.6	70.0	130	
Anions and Nutri	ients (QCLot: 1058240)									-
WT2322556-001	Anonymous	Phosphorus, total	7723-14-0	E372-U	0.0966 mg/L	0.1 mg/L	96.6	70.0	130	
Anions and Nutri	ients (QCLot: 1058241)									
HA2300428-001	Anonymous	Ammonia, total (as N)	7664-41-7	E298	ND mg/L	0.1 mg/L	ND	75.0	125	
Anions and Nutri	ients (QCLot: 1060386)									
WT2322846-001	Anonymous	Nitrate (as N)	14797-55-8	E235.NO3	2.46 mg/L	2.5 mg/L	98.2	75.0	125	
Anions and Nutri	ients (QCLot: 1060387)						1			
WT2322846-001	Anonymous	Nitrite (as N)	14797-65-0	E235.NO2	0.490 mg/L	0.5 mg/L	98.0	75.0	125	
Anions and Nutri	ients (QCLot: 1060388)						1			1
WT2322846-001	Anonymous	Chloride	16887-00-6	E235.Cl	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutri	ients (QCLot: 1060389)						1			
WT2322846-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	96.6 mg/L	100 mg/L	96.6	75.0	125	
Anions and Nutri	ients (QCLot: 1060390)									1
WT2322846-001	Anonymous	Fluoride	16984-48-8	E235.F	0.992 mg/L	1 mg/L	99.2	75.0	125	
otal Metals (QC	CLot: 1058349)						1			
WT2322844-002	Anonymous	Aluminum, total	7429-90-5	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		Antimony, total	7440-36-0	E420	0.0544 mg/L	0.05 mg/L	109	70.0	130	
		Arsenic, total	7440-38-2	E420	0.0558 mg/L	0.05 mg/L	112	70.0	130	
		Barium, total	7440-39-3	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Beryllium, total	7440-41-7	E420	0.00513 mg/L	0.005 mg/L	102	70.0	130	
		Bismuth, total	7440-69-9	E420	0.0487 mg/L	0.05 mg/L	97.3	70.0	130	
		Boron, total	7440-42-8	E420	ND mg/L	0.05 mg/L	ND	70.0	130	
		Cadmium, total	7440-43-9	E420	0.00519 mg/L	0.005 mg/L	104	70.0	130	
		Calcium, total	7440-70-2	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		Cesium, total	7440-46-2	E420	0.00279 mg/L	0.0025 mg/L	112	70.0	130	
				- 100		0.0125 mg/L	104	70.0	100	
		Chromium, total	7440-47-3	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		Chromium, total Cobalt, total	7440-47-3 7440-48-4	E420 E420	0.0130 mg/L 0.0130 mg/L	0.0125 mg/L	104	70.0	130	

Page	:	12 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300

Sub-Matrix: Water



Qualifier

Matrix Spike (MS) Report

Low

Recovery Limits (%)

High

Recovery (%)

MS

Spike

Target

Concentration

# Laboratory sample ID Analyte Client sample ID CAS Number Total Metals (QCLot: 1058349) - continued

WT2322844-002	Anonymous	Iron, total	7439-89-6	E420	ND mg/L	0.05 mg/L	ND	70.0	130	
		Lead, total	7439-92-1	E420	0.0253 mg/L	0.025 mg/L	101	70.0	130	
		Lithium, total	7439-93-2	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Magnesium, total	7439-95-4	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		Manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Molybdenum, total	7439-98-7	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Nickel, total	7440-02-0	E420	0.0252 mg/L	0.025 mg/L	101	70.0	130	
		Phosphorus, total	7723-14-0	E420	0.572 mg/L	0.5 mg/L	114	70.0	130	
		Potassium, total	7440-09-7	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		Rubidium, total	7440-17-7	E420	0.00559 mg/L	0.005 mg/L	112	70.0	130	
		Selenium, total	7782-49-2	E420	0.0526 mg/L	0.05 mg/L	105	70.0	130	
		Silicon, total	7440-21-3	E420	ND mg/L	0.5 mg/L	ND	70.0	130	
		Silver, total	7440-22-4	E420	0.00482 mg/L	0.005 mg/L	96.4	70.0	130	
		Sodium, total	7440-23-5	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		Strontium, total	7440-24-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		Sulfur, total	7704-34-9	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		Tellurium, total	13494-80-9	E420	0.00493 mg/L	0.005 mg/L	98.7	70.0	130	
		Thallium, total	7440-28-0	E420	0.0506 mg/L	0.05 mg/L	101	70.0	130	
		Thorium, total	7440-29-1	E420	0.00523 mg/L	0.005 mg/L	105	70.0	130	
		Tin, total	7440-31-5	E420	0.0265 mg/L	0.025 mg/L	106	70.0	130	
		Titanium, total	7440-32-6	E420	0.0129 mg/L	0.0125 mg/L	103	70.0	130	
		Tungsten, total	7440-33-7	E420	0.00528 mg/L	0.005 mg/L	106	70.0	130	
		Uranium, total	7440-61-1	E420	ND mg/L	0.00025 mg/L	ND	70.0	130	
		Vanadium, total	7440-62-2	E420	0.0272 mg/L	0.025 mg/L	109	70.0	130	
		Zinc, total	7440-66-6	E420	0.0248 mg/L	0.025 mg/L	99.2	70.0	130	
		Zirconium, total	7440-67-7	E420	0.00540 mg/L	0.005 mg/L	108	70.0	130	
olatile Organic	Compounds (QCLot: 1	1058848)								
BF2300165-001	Anonymous	Benzene	71-43-2	E611A	95.4 µg/L	100 µg/L	95.4	60.0	140	
		Ethylbenzene	100-41-4	E611A	96.6 µg/L	100 µg/L	96.6	60.0	140	
		Toluene	108-88-3	E611A	96.8 µg/L	100 µg/L	96.8	60.0	140	
		Xylene, m+p-	179601-23-1	E611A	200 µg/L	200 µg/L	99.9	60.0	140	
		Xylene, o-	95-47-6	E611A	101 µg/L	100 µg/L	101	60.0	140	
lydrocarbons (	QCLot: 1058847)									
BF2300165-001	Anonymous	F1 (C6-C10)		E581.F1-L	2120 µg/L	2000 µg/L	106	60.0	140	

Method

Page	:	13 of 13
Work Order	:	WT2322882
Client	:	MTE Consultants Inc.
Project	:	48650-300



Chain of Custody	(COC) /	Analytical	Request	Form
------------------	---------	------------	---------	------

COC Number: 20

Page



Canada Toll Free: 1 800 668 9878

Environmental Division Waterloo Work Order Reference WT2322882

ALS)	www.arsgroutar.com			THE DAY OF	Turnaround Time (TAT) Requested												
Report To	Contact and company name below will appear on the fina	Select Report	Select Report Format: PDF K EXCEL DEDD (DIGITAL)			Routine [R] if received by 3pm M-F - no surcharges apply											
Company:	MIE	Merge QC/				4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum						minimum			14.5	2.1	
Contact:	Kyle Read		Results to Criteria on Report - pr	ovide details below if b	box checked	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum     2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum						minimum			173	33.	
Phone:			Compare Results to Criteria on Report - provide details below if box checked Select Distribution: MAIL ALL FAX			<ul> <li>2 day [P2] if received by 3pm M-F - 30% rush surchage minimum</li> <li>1 day [E] if received by 3pm M-F - 100% rush surcharge minimum</li> </ul>						minimum					
	Company address below will appear on the final report	Email 1 or Es	+ toph with	85.con	1	Como	day real	if receive	ment vel h	M-5 - 200%	rish surchar	roe, Addition					
Street:		Email 2 Fo	Email 1 or Fax Kreed ante 85 com Email 2 greer ante 85 com Email 3			Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional may apply to rush requests on weekends, statutory holidays and non-rout							Telep	hone: +1	519 886 8	910	
City/Province:	Kitchener	Email 3	reev ac mile of	1 11	nitioann is in	Da	ate and Ti	me Requ	ired for al	E&P TATS		11.1					
Postal Code:	in other of the standard for the set	Lindi o	Invoice Recipients					F	or all tests	with rush TA	Ts requested	, please cont	tact your AN	A to confirm a	vailability.	1	
nvoice To	Same as Report To	Catast Isuala			FAX	Analysis Requ							Jest				
Participant and a second second	Copy of Invoice with Report YES NO		AND THE REAL PROPERTY OF THE P		1700							itered and F	Preserved (FIP) below SAMPLES ON HOLD EXTENDED STORAGE REQUIRE				
Company:		Email 1 or Fa	ax	-	a dealer second and	CONTAINERS	-				1.1.1						STORAGE REQUIRED
Contact:	A SAME AND TRANSPORTED AND READING AND THE	Email 2	Oil and Gas Required	+ Fields (client us	(a)	IZ -		-							-		S
Contact	Project Information			PO#		Z	- at	-	~	24.30					-	НОГР	RE
ALS Account #	/ Quote #	AFE/Cost Cente	and the second se			Z	10	2	BTEX	-	101					Q	UH UH
Job #: 48	650-300	Major/Minor Cod	de:	Routing Code:		181	1	0	10			1				17	RA
PO / AFE:	430.000	Requisitioner	f:	that particular	The second second	Ч	1 on	20	01	1.1						NO	10
	and and the second order all second	Location:		100 000 00	Fields due		4	S.	+	-			54				
LSD:	502275	199 - AALS Contar	+ = 1 11	Sampler:	14	NUMBER	U		12-	Contra a		1	1240		137 0	SAMPLES	EXTENDED
ALS Lab Wo	ork Order # (ALS use only): WT23222	DOL FA	Cmily A	1/	14	- 8	ZJ	1010	T	POLIFICS	1 - P 1-	13 C 13	1		10	MF	EN I
and the loss	Sample Identification and/or (	Coordinates	Date	Time	Sample Type	2	191-	0/2	46							A	X
ALS Sample #	(This description will appear or	n the report)	(dd-mmm-yy)	(hh:mm)	- AP 4 1 2 3			1	1	0.00			+-+	-		0,	-
(ALS use only)	MW 102-23 MW 104-23	ここの「「「「「」」」」」	26-101-23	1250	GW	83	$\chi$	$\langle \times \rangle$	1							-	-
the last	MW 104 27	and the subsection of the	26- Jul-23	1235	OW	8>		< X	X	_						-	in second
ALC: NO	MW10420	<u>0</u>		115													1.0
	1		China and a second		the state of	1000	2284 10	0.100		1							1.84
	and place in the second second second	are measuremented						-	-								
		white a set to the restant	The Clark Stratter	and the states	in all brits	1231	210	1	1 200	1. 19				-			
Alter and	au an	a constant designed to a	and the subscription of	Distance and Arris	No Realized as	CONCURS IN											
Alter de		has been a series				10000						-					
The second	the second state of the second state	inclusion and present the	Star Allen The	A REAL PROPERTY AND			-	-							100	1.00	
							_	_	-	_		_		-			
100 - 100			and and the other			1		1	-	1202	1	E 16				-	
		and set and place the set of the local dist	- In whether the	man all	SWEET SALES	-	2- 2	10	1	221 0	1000	100	0.00				
Sale Vierpo	And a set collour transfer de la caso de la																
	and the second sec	and the second second second	and the second s					-	-								
	and the second se	and the second states afree		1	AL		-	-	1.1.1.1	SAMPLE	RECEIP	TDETAIL	SIALS	use only)	1	_	
The Chang	the second s	Notes / Specify Limits for n	esult evaluation by selecti	ng from drop-down	below	Ownelling	-	di r	-				FROZ		E	ING INITL	ATED
Drin	nking Water (DW) Samples ¹ (client use)		(Excel COC only)		-		g Metho					eipt Notific	treet in the factor is a	M*		NO NO	AID
	taken from a Regulated DW System?								OZ TALAN AND THE					ody Seals			ES 🔽
Are samples						Cooler	Custod			PERATURE	YES VN	A Sam	The Carl Proto State State	NAL COOLE	ALARA PARTIES	YE ATURES	
						One section of	INIT	THE COU	ILER TEN	FLIGHTUNE	0.0	1		000000		11011110	Ī
	for human consumption/ use?		AN ANTAL ADDA	The second of a	a service of	1	1 19	200	1 1 1 1 1				7.5				
	YES NO		INITIAL SHIPME	NT RECEPTION (A	ALS use only)	1	_			FIN	AL SHIP	Deto:	CEPTION	I (ALS US	a only)	Time	
22	A SHIPMENT RECEASE (MARCASO)	Time Received	by:	Date:		Time.	The second secon	CONC	n	1.1		Jul	ylle	123		16	1.0
1	JULY 26/23	3 HDS Received		UTE LABORATOR	V CORV VELL	OW - CLIE	NTCOP	Y	1-	-	-	0.5				11.	AUG;
		TION	W	HITE - LABORATOR	ions as specified on th	ne back page	e of the wi	nite - repr	ort copy.				1	N-C	56	Vh	1-1
	Dipage fill in this form LE	GIBLY. By the use of this form the use	er acknowledges and agrees with COC form.	n une renno anu colluit	and an appendix of the								1	V	000	Cr	-
	If this form may delay analysis. Prease in an another plant in the second secon	ase submit using an Authorized DW c											C	IR-C	145	30	- 3
	/ /												-	IM_	310		6
													1	111	210	6	~