

Functional Servicing and Stormwater Management Report

Proposed Residential Development 79 Sideroad 19

Township of Centre Wellington (Fergus), Ontario

Submitted to:

Wrighthaven Homes Ltd. 925 Gartshore St, Unit 1 Fergus, ON N1M 3V9

Submitted by:

GEI Consultants Canada Ltd. 650 Woodlawn Road W, Block C, Unit 2 Guelph, ON N1K 1B8 519.824.8150

October 2024 Project No. 2401073 / 122025

Table of Contents

Cert	tification	iii
Rec	ord of Revisions	iv
1.	Introduction	1
1.1.	Site Information	1
1.2.	Report Objectives	1
2.	Reference Information	2
2.1.	Reports and Standards	2
2.2.	Soils	2
3.	Proposed Development	3
3.1.	Sanitary Servicing	3
3.2.	Water Servicing	3
3.3.	Storm Servicing	4
4. 4.1. 4.2. 4.3. 4.4. 4.5.	Stormwater Management DesignStormwater CriteriaStormwater Design ApproachExisting ConditionsAllowable Release RatesPost-Development Conditions4.5.1.Routing4.5.2.Drainage Conveyance	5 5 7 8 8 9 10
5.	Water Budget	12
5.1.	Existing Conditions	12
5.2.	Post-Development Conditions	12
6.	Erosion and Sediment Control Plan	16
7.	Maintenance Plan	17
8.	Site Lighting	18
9.	Conclusions	19

List of Tables

Table 4-1. Chicago Storm Parameters	6
Table 4-2. MIDUSS Horton Parameters	6
Table 4-3. Sediment Loading and Cleanout Frequency	7
Table 4-4. Existing Condition Flow Rates	8
Table 4-5. Allowable Release Rates	8
Table 4-6. Proposed Stormwater Management Facility - Stage/Storage/Discharge	9
Table 4-7. Post Development Flows	10
Table 4-8. Peak Flow Comparison	10
Table 5-1. Existing Conditions Water Balance Inputs	14
Table 5-2. Existing Conditions Monthly Water Balance (To Wetland)	14
Table 5-3. Existing Conditions Monthly Water Balance (To Right-of-Way)	14
Table 5-4. Post-Development Conditions Water Balance Inputs	15
Table 5-5. Post-Development Conditions Monthly Water Balance (To Wetland)	15
Table 5-6. Post-Development Conditions Monthly Water Balance (To Right-of-Way)	15

Figures

Figure 1. Location Plan	20
Figure 2. Existing Conditions Drainage Areas	20
Figure 3. Post-Development Drainage Areas	20
Figure 4. Conceptual Sanitary Sewer Catchment Areas	20
Figure 5. Conceptual Storm Sewer Catchment Areas	20

Appendices

- Appendix A Geotechnical Investigation, JLP Services Inc., April 18, 2023
- Appendix B Preliminary Sanitary Sewer Design Sheet
- Appendix C Preliminary Storm Sewer Design Sheet
- Appendix D MIDUSS Hydrologic Modelling

PL/AK:kw

B:\Working\WRIGHTHAVEN HOMES\2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Reports_Manuals_Contracts\Design Report\2401073 122025 SDR19 FSSWM Report 241001_draft.docx

Certification

PREPARED BY: GEI Consultants Canada Ltd.

Parth Lad, E.I.T. Technical Specialist

CHECKED BY: GEI Consultants Canada Ltd.

nd.O

Angela Kroetsch, P.Eng. Vice President, Senior Project Manager Land Development Practice Lead

Record of Revisions

Identification	Date	Description of Issued and/or Revision
1	September 5, 2024	Issued for Review
2	October 1, 2024	Issued for Approval

1. Introduction

GEI Consultants Canada Ltd. have been retained by Wrighthaven Homes Ltd. to complete the proposed site servicing and stormwater management design for the proposed residential development involving properties 73 Sideroad 19 and 79 Sideroad 19 in the Town of Fergus in the Township of Centre Wellington, Ontario (shown on Figure 1, hereafter referred to as the "Site").

1.1. Site Information

The 1.12-hectare (ha) property is located at 79 Sideroad 19 in the Town of Fergus in the Township of Centre Wellington. The property is rectangular in shape, with approximately 57m of frontage along Sideroad 19 and a depth of approximately 190m. For the purposes of this report, Sideroad 19 is considered to have a north-south orientation. The Site is bordered by existing residential properties to the north, an existing wetland and residential properties to the east, existing residential properties to the south, and Sideroad 19 to the west.

1.2. Report Objectives

The objectives of this report are as follows:

- Document all existing reports and standards within the study area;
- Summarize the proposed development conditions and the storm, sanitary and water servicing design;
- Identify the Township of Centre Wellington (Fergus) stormwater criteria for the design of the stormwater management facilities; and,
- Detail and summarize the stormwater management design to document the existing and postdevelopment conditions.

2. Reference Information

2.1. Reports and Standards

The proposed site servicing and stormwater management design is based on the following reports, standards, and information prepared by others:

Site Background Reports and Historical Drawings:

- **Geotechnical Investigation**, Proposed Residential Development, 79-87 Side Road 19, Township of Centre Wellington (Fergus), Ontario, Ref. No. G4670-22-12, April 2023, prepared by JLP Services Inc.
- Reconstruction of Sideroad 19 Plan and Profile Sta. 3+530 to Sta. 3+710, prepared by Triton Engineering Services Limited, April 2009.
- **Reconstruction of Victoria Crescent** Plan and Profile Sideroad19 to Sta. 7+150, prepared by Triton Engineering Services Limited, June 2009.

Reference Standards:

• Development Manual, Centre Wellington, dated March 2018.

2.2. Soils

Soil Conditions

The soils for the Site are classified as follows:

• The predominant soil type on the Site is a combination of sandy silt, sand and silt (JLP Services, 2023).

Groundwater Levels

The groundwater levels observed on Site are as follows:

• Five monitoring wells were installed and observed in April 2023, resulting in a range of water levels between 415.9m to 417.1m across the Site (JLP Services, 2023).

Infiltration Rates

The infiltration rates have been reviewed and developed from the Geotechnical Investigation completed by JLP Services Inc. (dated April 2023), following results:

• The predominant soils near the proposed stormwater management facility (BH5) are silt and sand. The coefficient of permeability is estimated to be in the range of 1 x 10⁻⁵ cm/s to 1 x 10⁻⁶ cm/s (JLP Services, 2023).

Refer to Appendix A for the geotechnical report prepared by JLP Services Inc.

3. Proposed Development

The proposed site development will contain the following elements:

- Twelve (12) bungalow and eight (8) two-storey dwelling units with associated yards and driveways fronting onto the proposed site access road.
- One (1) single-detached dwelling with associated yard and driveway fronting onto Sideroad 19.
- An amenity area.
- An urbanized (curb and gutter) site access road, including turnaround and parking areas. Road width is 6m, measured from edge of pavement.
- Servicing and stormwater management infrastructure, including a stormwater management facility.

3.1. Sanitary Servicing

The existing site sanitary sewer servicing is as follows:

• The existing dwelling is serviced by a sewage leaching bed located to the south of the dwelling. This existing septic system is to be removed.

The proposed site sanitary servicing is as follows:

- The extension of a new 200mm diameter sanitary sewer through the site from the existing 200mm diameter municipal sanitary sewer on Sideroad 19.
- Individual 100mm diameter sanitary service laterals to each unit. Services installed below groundwater to be furnished with clay cut-off collars or trench plugs at regular spacing.
- Waterproof wrapping applied to all proposed sewer joints where the pipe invert is greater than 0.3m below the seasonal high groundwater level.

Conceptual sanitary sewer catchment areas are shown in Figure 4 and preliminary sanitary sewer design calculations are included in Appendix B.

3.2. Water Servicing

The existing site water servicing is as follows:

- The existing dwelling is serviced by a private domestic water supply well located to the south of the dwelling. This existing well is to be used for groundwater level monitoring then decommissioned by a licensed well driller in accordance with Ontario Regulation 903.
- An existing fire hydrant is located to the west of the site, within the western boulevard along Sideroad 19 municipal right-of-way.

The proposed site water servicing is as follows:

- The extension of a new watermain through the site from the existing 200mm diameter municipal watermain on Sideroad 19.
- Individual 25mm diameter water services to each unit.
- Two new fire hydrants located along the internal site access road.

3.3. Storm Servicing

The existing site storm servicing is as follows:

- All on-site runoff, except for the front yard and driveway of the existing dwelling to remain, sheetflows in the easterly direction to the rear of the property towards the wetland. Runoff from the front yard and driveway of the existing dwelling sheetflow in a westerly direction towards the Sideroad 19 right-of-way.
- External drainage north of the Site flows through a 450mm diameter concrete pipe and ditch onsite that outlets to the wetland.

The proposed site storm servicing is as follows:

- New storm sewer and catch basins designed to capture and convey runoff to the proposed stormwater management facility, ultimately discharging from the outlet to the wetland.
- Lot swales designed to provide conveyance of runoff to the storm sewer system on-site or directly to the wetland.
- Individual 100mm storm service laterals for sump pump discharge. Services installed below groundwater to be furnished with clay cut-off collars or trench plugs at regular spacing.
- Waterproof wrapping applied to all proposed sewer joints where the pipe invert is greater than 0.3m below the seasonal high groundwater level.

Conceptual storm sewer catchment areas are shown in Figure 5 and preliminary storm sewer design calculations are included in Appendix C.

4. Stormwater Management Design

4.1. Stormwater Criteria

The stormwater management criteria established by the Township of Centre Wellington (Fergus) are as follows:

Conveyance Systems

- Storm sewers for the Site shall be designed to convey the 5-year storm event.
- Swales designed to convey the 100-year storm shall be considered significant by the Township and require an easement.
- Roof leader runoff is considered clean and shall be infiltrated where possible.
- Connections of roof leaders to laterals is prohibited.
- Foundation drains shall be directed to sump pumps and discharged to grade or a storm lateral.
- The major overland flow route shall be designed to convey the 100-year storm event. Overland Flow elevations should not come within 0.15m of the Top of Foundation grades.

Quantity Control

- The post-development condition peak flows to the wetland will be controlled to the existing condition rate for the 2-year to 100-year storm events.
- The post-development condition peak flows from the Site will be controlled to the existing condition rate for the 2-year to 100-year storm events.

Quality Control

• The Site will provide Enhanced level of protection, 80% TSS removal.

Modelling Criteria

As per the Township of Centre Wellington development standards, MIDUSS modelling is required to demonstrate the performance for the 2-year to 100-year design events. Based on the following criteria:

- The Township of Centre Wellington (Fergus) mass rainfall data was used to model the full range of design storm events
- The Chicago storm parameters and the total depth of rainfall for the 2-year up to the 100-year storm (Table 4-1)
- The Horton infiltration method was used in the MIDUSS model with the parameters summarized in Table 4-2

Table 4-1. Chicago Storm Parameters

Parameter	2 Year	5 Year	100 Year	
a =	695.047	1,459.072	6,933.019	
b =	6.387	13.690	34.669	
c =	0.793	0.850	0.998	
R =	0.375	0.375	0.375	
td =	180	180	180	
Rainfall depth (mm)	33.014	49.792	97.935	

Table 4-2. MIDUSS Horton Parameters

Parameter	Impervious Areas	Pervious Areas
Manning's 'n'	0.013	0.300
Maximum Infiltration (mm/hr)	0.0	125.0
Minimum Infiltration (mm/hr)	0.0	5.0
Lag Constant (hr)	0.00	0.25
Depression Storage (mm)	1.5	5.0

4.2. Stormwater Design Approach

The stormwater management approach is designed to follow a "treatment train", which includes lot level, conveyance and end-of-pipe stormwater management practices, designed to filter and control runoff prior to discharging to the wetland.

Lot Level Controls

The stormwater management lot level controls designed for the Site includes the following measures:

- Roof Drainage to Ground Surface
 - The lots have been designed to have split drainage with runoff conveyed to the rear yard and street. The runoff will be filtered through the grassed surfaces within and between the lots.
- Rear Yard Swales
 - The rear yards of the lots have been designed to include grass swales, which will convey and filter runoff.

Conveyance Controls

The stormwater management conveyance controls designed for the Site includes the following measures:

• Road Storm Sewer Network

- The minor system (5-year storm event) will be captured within the storm sewer piping within the street right-of-way.
- The flows will be discharged to the proposed stormwater management facility.

Grassed Swales

- Swales in the rear yards north of the site access road will convey runoff to the proposed storm sewer network and stormwater management facility
- Swales in the rear yards south of the site access road will convey runoff to the existing wetland.

End-of-Pipe Controls

The stormwater management end-of-pipe controls designed for the Site includes the following measures.

- Stormwater Management Facility
 - The proposed stormwater management facility has been designed to function as a wetland. From Table 3.2, Stormwater Management Planning and Design Manual, 2003, in order to provide Enhanced water quality treatment, a wetland facility requires 121.2 m³/ha of storage volume for a contributing drainage area that is 70% impervious. 40.0 m³/ha of the required storage volume is extended detention storage, while the remaining 81.2 m³/ha is permanent pool storage.
 - Based on a total contributing drainage area of 0.82 hectares (Catchments 2000 and 2001), 66.6 m³ of permanent pool storage is required. The stormwater management facility has been designed with a 0.3 m deep permanent pool, which provides 80.0 m3 of permanent pool storage and a sediment forebay which provides 38.8 m³ of permanent pool storage, for a total permanent pool storage of 118.8 m³.
 - Based on a total contributing drainage area of 0.82 hectares (Catchments 2000 and 2001),
 32.8 m³ of extended detention storage is required. The stormwater management facility has been designed to provide approximately 562.5 m³ of extended detention storage.
- Sediment Loading and Cleanout Frequency
 - Table 4-3 illustrates sediment loading to the sediment forebay in the stormwater management facility as well as the subsequent cleanout frequency required to maintain this system.

Table 4-3. Sediment Loading a	nd Cleanout Frequency
-------------------------------	-----------------------

Catchment	Percent	Annual Sediment	TSS	Annual TSS	Storage (1/3	Cleanout
Area	Impervious	Loading	Removal	Reduction	volume)	Frequency
0.82 ha	70%	2.81 m ³	80%	2.25 m ³	12.94 m ³	~ 5.5 years

4.3. Existing Conditions

For existing conditions analysis purposes, the Site was modeled as four (4) drainage catchments. The existing development condition drainage catchments are shown in Figure 2 and described below. The existing conditions MIDUSS hydrologic modeling is included in Appendix D.

Catchment 100 (3.45 hectares, 25% impervious) represents external drainage that enters the Site from the north. Runoff from Catchment 100 sheetflows overland to the wetland east of the property.

Catchment 200 (0.99 hectares, 20% impervious) represents the majority of the Site, including the existing dwellings. Runoff from Catchment 200 sheetflows overland to the wetland east of the property.

Catchment 300 (0.08 hectares, 0% impervious) represents the on-site portion of the wetland at the southeast corner of the property. Runoff from Catchment 300 sheetflows overland to the wetland east of the property.

Catchment 400 (0.05 hectares, 60% impervious) represents the northwest portion of the Site, including the front yard and driveway of the existing dwelling to remain. Runoff from Catchment 400 sheetflows overland to the Sideroad 19 right-of-way west of the property.

Table 4-4 summarizes the flow from each catchment and total flows under existing conditions.

	2-Year	5-Year	100-Year
Catchment 100	0.180 m ³ /s	0.252 m ³ /s	0.624 m ³ /s
Catchment 200	0.044 m ³ /s	0.091 m ³ /s	0.335 m³/s
Catchment 300	0.001 m ³ /s	0.006 m ³ /s	0.026 m³/s
Total to Wetland	0.215 m ³ /s	0.334 m ³ /s	0.888 m³/s
Catchment 400	0.007 m ³ /s	0.009 m ³ /s	0.018 m³/s
Total to Sideroad 19	0.007 m³/s	0.009 m ³ /s	0.018 m³/s
Total from the Site	0.220 m ³ /s	0.342 m ³ /s	0.901 m ³ /s

Table 4-4. Existing Condition Flow Rates

4.4. Allowable Release Rates

Table 4-5 identifies the allowable release rates for post-development conditions established as the existing condition flow rates generated from the site during the 2, 5, and 100-year design storm events.

Table 4-5	Allowable	Release	Rates
-----------	-----------	---------	-------

	2-Year	5-Year	100-Year
Allowable Release Rate	0.220 m ³ /s	0.342 m³/s	0.901 m ³ /s

4.5. Post-Development Conditions

For post-development analysis purposes, the Site was modeled as eight (8) drainage catchments. The post-development drainage catchments are shown in Figure 3 and described below. The post-development MIDUSS hydrologic modeling is included in Appendix D.

Catchment 1000 (3.45 hectares, 25% impervious) represents external drainage that enters the Site from the north. Runoff generated during minor storm events from Catchment 1000 is captured via an on-site storm sewer easement and conveyed to the existing wetland east of the property. Runoff which exceeds the capacity of the storm sewer during major storm events will sheetflow overland to the proposed stormwater management facility, ultimately discharging to the wetland. The facility has been designed with capacity for this external runoff.

Catchment 2000 (0.69 hectares, 80% impervious) represents the majority of the proposed road and development, including all units fronting onto the proposed site access road. Runoff generated during minor storm events from Catchment 2000 are captured via on-site storm sewers and conveyed to the proposed stormwater management facility. Runoff which exceeds the capacity of the storm sewers

during major storm events will sheetflow overland to the proposed facility, ultimately discharging to the wetland.

Catchment 2001 (0.13 hectares, 15% impervious) represents the proposed stormwater management facility at the east end of the Site and access road for the facility. Runoff from Catchment 2001 will be attenuated by the proposed stormwater management facility, ultimately discharging to the wetland.

Catchment 2002 (0.08 hectares, 0% impervious) represents the rear yards of units fronting onto the south side of the proposed site access road. Runoff from Catchment 2002 is considered clean and will be collected by a rear yard swale, ultimately discharging to the wetland.

Catchment 3000 (0.13 hectares, 0% impervious) represents the on-site portion of the wetland at the southeast corner of the property. Runoff from Catchment 3000 sheetflows overland to the wetland east of the property.

Catchment 4000 (0.05 hectares, 60% impervious) represents the northwest portion of the Site, including the front yard and driveway of the existing dwelling to remain. Runoff from Catchment 4000 sheetflows overland to the Sideroad 19 right-of-way west of the property, same as existing conditions.

Catchment 4001 (0.03 hectares, 30% impervious) represents the northeast portion of the Site, including the front yard and driveway of the proposed single-detached dwelling. Runoff from Catchment 4001 sheetflows overland to the Sideroad 19 right-of-way west of the property.

Catchment 4002 (0.01 hectares, 90% impervious) represents a very small portion of the proposed road. Runoff from Catchment 4002 sheetflows overland to the Sideroad 19 right-of-way west of the property.

4.5.1. Routing

MIDUSS was used to calculate the peak flow rate from the Site under post-development conditions. The post-development MIDUSS hydrologic modeling is included in Appendix D.

Table 4-6 identifies the storage capacity available and the capacity used for the proposed stormwater management facility under each storm condition.

	Available Capacity			Actual Capacity Used		
	Peak Flow m³/sStorage Volume m³Storage Elevation m		Peak Flow m³∕s	Storage Volume m ³	Storage Elevation m	
Outlet Catch Basin Lip	0.014	336.3	416.00			
2-Year				0.033	343.8	416.01
Weir	0.099	457.5	416.20			
5-Year				0.159	483.0	416.24
100-Year				0.797	606.4	416.41
Overflow	1.331	681.3	416.50			

Table 4-6. Proposed Stormwater Management Facility - Stage/Storage/Discharge

Table 4-7 summarizes the flow from each catchment and total flows under post-development conditions.

	2-Year	5-Year	100-Year
Catchment 1000 (controlled)	0.180 m³∕s	0.252 m³∕s	0.624 m³⁄s
Catchment 2000 (controlled)	0.117 m³⁄s	0.151 m³⁄s	0.256 m³⁄s
Catchment 2001 (controlled)	0.004 m³∕s	0.011 m³/s	0.044 m³⁄s
Catchment 2002 (uncontrolled)	0.001 m³⁄s	0.005 m³∕s	0.022 m³⁄s
Catchment 3000 (uncontrolled)	0.001 m³⁄s	0.010 m³⁄s	0.040 m³⁄s
Total Flow to Wetland	0.033 m³/s	0.159 m³⁄s	0.851 m³⁄s
Catchment 4000 (uncontrolled)	0.007 m³⁄s	0.009 m³⁄s	0.018 m³⁄s
Catchment 4001 (uncontrolled)	0.002 m³⁄s	0.004 m³⁄s	0.011 m³⁄s
Catchment 4002 (uncontrolled)	0.002 m³∕s	0.003 m³/s	0.004 m³⁄s
Total Flow to Sideroad 19	0.011 m³/s	0.015 m³⁄s	0.032 m³/s
Total Flow from the Site	0.034 m³/s	0.168 m³/s	0.869 m³/s

Table 4-7. Post Development Flows

A summary of the existing and post-development peak flow rates from the Site for the 2-year to 100-year design storm events is provided in Table 4-8. Post-development peak flows rates are lower than the allowable rates for all design storm events.

Table 4-8. Peak Flow Comparison

	2-Year	5-Year	100-Year
Allowable Release Rate	0.220 m ³ /s	0.342 m ³ /s	0.901 m ³ /s
Post-Development Flow	0.034 m³∕s	0.168 m³∕s	0.869 m³/s

4.5.2. Drainage Conveyance

The following is a description of the post-development drainage conveyance within the Site:

• External Drainage Conveyance:

• The external drainage from north of the Site will be conveyed through a 450mm diameter storm pipe within a 3.0m wide easement located along the north and east limits of the Site, discharging to the existing wetland. Once this storm sewer reaches capacity, drainage will be conveyed via a swale to the on-site storm sewer network to the proposed stormwater management facility, ultimately discharging to the existing wetland. Once this swale reaches capacity, drainage will sheetflow overland to the proposed stormwater management facility, ultimately discharging wetland.

• Roadway Drainage Conveyance:

 Conveyance will be through a combination of catch basins and storm sewer piping sized to the 5-year design storm event, to the proposed stormwater management facility to outlet at the existing wetland. Runoff which exceeds the 5-year design storm event will sheetflow overland, either to the Sideroad 19 right-of-way or to the stormwater management facility.

• Rear Yard Conveyance:

- Runoff from the rear yards north of the site access road will be conveyed by the storm sewer network described above.
- Runoff from the rear yards south of the site access road will be conveyed by a swale that discharges directly to the existing wetland.

5. Water Budget

5.1. Existing Conditions

The average annual precipitation for the area in which the Site is location is estimated to be about 945.9 mm. This amount is based on precipitation data recorded at the Fergus Shand Dam meteorological station for the period from 1981 to 2010.

It has been estimated that the potential annual evapotranspiration for this area is 586.3 mm for pervious surfaces. Therefore, 359.6 mm remains available for infiltration and runoff. For impervious surfaces within the development, the annual evapotranspiration is estimated to be 183 mm, resulting in approximately 762.9 mm available for runoff and infiltration.

Under existing conditions, the Site is approximately 20% impervious overall. The existing annual average runoff volume towards the wetland is 2,278 m³ and the existing annual average runoff volume towards the Sideroad 19 right-of-way is 261 m³. The existing annual recharge volume for the site is 2,787 m³. Tables 5-1, 5-2 and 5-3 illustrate the monthly water balance under existing conditions.

5.2. Post-Development Conditions

Under post-development conditions, the Site is approximately 52% impervious overall. The increase in impervious area results in increased runoff and decreased recharge. Following the development of the Site, the average annual recharge volume will be 1,379 m³, the average annual runoff volume towards the wetland will be 4,798 m³, and the average annual runoff volume towards the Sideroad 19 right-of-way will be 426 m³. Tables 5-4, 5-5 and 5-6 illustrate the monthly water balance under post-development conditions.

To mitigate the change in groundwater recharge anticipated under post-development conditions, a comprehensive review of the site layout and groundwater conditions was completed to investigate the feasibility of low-impact development features such as infiltration galleries and bioswales to enhance infiltration on the Site. Based on provincial and municipal design guidelines, a minimum vertical separation of 1.0m is required between groundwater level and the underside of infiltration systems. Furthermore, a minimum horizontal separation of 5.0m is required between building foundations and infiltration systems.

Groundwater elevations are shown in Figure 7 contained in the Hydrogeological Study Report completed by GEI Consultants Canada Ltd. Finished ground elevations are shown in the conceptual grading plan submitted with this report. Both groundwater and ground elevations decrease across the Site in the easterly direction, from Sideroad 19 to the wetland. However, ground elevations decrease in greater magnitude, resulting in decreased vertical separation between groundwater and ground towards the eastern end of the Site. At the end of the proposed swale along the southern edge of the Site and the start of the wetland, groundwater is at ground level. As a result of the 1.0m separation requirement, infiltration facilities are not feasible in the eastern half of the Site.

Looking at the western half of the Site, there is more separation between groundwater and ground elevations. However, there is only one location where infiltration systems can be placed 5.0m away from building foundations, which is the front yard of the proposed single-detached dwelling. However, an infiltration system at this location would conflict with water and sanitary services for the dwelling. Furthermore, this infiltration system would not be significant as it would capture runoff from a relatively small area.

Based on the information presented above, infiltration systems are not feasible on the Site. Furthermore, as detailed in the Hydrogeological Study Report by GEI Consultants Canada Ltd., it is expected that the decrease in recharge will not have a significant impact on overall municipal groundwater resources.

Table 5-1. Existing Conditions Water Balance Inputs

	Contributing Area (ha)	Percent Impervious (%)	Soil Type	Vegetation Type	Root Zone Depth (m)	Soil Moisture Retention Capacity (mm)	Runoff Factor	Evapotranspiration Factor for Impervious Surfaces
To Wetland	1.07	19	Fine sand	Shallow-rooted crops	0.50	50	0.45	0.34
To Right-of-Way	0.05	60	Fine sand	Shallow-rooted crops	0.50	50	0.85	0.34

Table 5-2. Existing Conditions Monthly Water Balance (To Wetland)

Month	Daily Average Temp.	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factor	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accumulative Potential Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(m³)
Jan	-7.4	0.00	0.0	24.3	0.0	67.9	67.9		186.5	0.0	0.0	0.0	12.7	0.0	12.7	5.7	62	74
Feb	-6.3	0.00	0.0	24.6	0.0	55.9	55.9		242.4	0.0	0.0	0.0	6.3	0.0	6.3	2.9	31	37
Mar	-1.9	0.00	0.0	30.6	0.0	59.6	59.6		302.0	0.0	0.0	0.0	3.2	0.0	3.2	1.4	15	18
Apr	5.7	1.22	0.9	33.6	30.2	74.1	43.9		50.0	0.0	26.5	47.6	23.8	25.2	49.0	22.2	238	286
May	12.2	3.86	2.0	37.8	75.6	86.9	11.3		50.0	0.0	66.4	20.5	22.2	226.8	249.0	113.0	1,209	1455
Jun	17.5	6.66	2.9	38.4	111.4	83.8	-27.6	-27.6	28.0	-22.0	92.9	12.9	17.6	0.0	17.6	8.0	85	103
Jul	20.0	8.16	3.4	38.7	131.6	89.2	-42.4	-69.9	11.0	-17.0	93.2	13.0	15.3	0.0	15.3	6.9	74	89
Aug	19	7.55	3.2	36.0	115.2	96.6	-18.6	-88.5	8.0	-3.0	87.4	12.2	13.7	0.0	13.7	6.2	67	80
Sep	14.9	5.22	2.5	31.2	78.0	93.1	15.1		23.1	15.1	68.5	9.5	11.6	0.0	11.6	5.3	57	68
Oct	8.3	2.15	1.3	28.5	37.1	77.2	40.2		50.0	26.9	32.5	17.8	14.7	0.0	14.7	6.7	71	86
Nov	2.1	0.27	0.3	24.3	7.3	93.0	85.7		50.0	0.0	6.4	86.6	50.7	0.0	50.7	23.0	246	296
Dec	-3.9	0.00	0.0	23.1	0.0	68.6	68.6		118.6	0.0	0.0	0.0	25.3	0.0	25.3	11.5	123	148
Total		35.09			586.3	945.9	359.6				473.8	220.1	217.0	252.0	469.0	212.9	2,278.1	2,739.9

Table 5-3. Existing Conditions Monthly Water Balance (To Right-of-Way)

Month	Daily Average Temp.	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factor	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accumulative Potential Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(m³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0	0.0	0.0	15.0	0.0	15.0	12.7	6	1
Feb	-6.3	0.0	0.0	24.6	0.0	55.9	55.9		242.4	0.0	0.0	0.0	7.5	0.0	7.5	6.4	3	1
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0	0.0	0.0	3.8	0.0	3.8	3.2	2	0
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	18.2	55.9	27.9	25.2	53.1	45.1	23	4
May	12.2	3.9	2.0	37.8	75.6	86.9	11.3		50.0	0.0	45.6	41.3	34.6	226.8	261.4	221.7	111	20
Jun	17.5	6.7	2.9	38.4	111.4	83.8	-27.6	-27.6	28.0	-22.0	63.8	42.0	38.3	0.0	38.3	32.5	16	3
Jul	20.0	8.2	3.4	38.7	131.6	89.2	-42.4	-69.9	11.0	-17.0	64.1	42.1	40.2	0.0	40.2	34.1	17	3
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-88.5	8.0	-3.0	60.1	39.5	39.8	0.0	39.8	33.8	17	3
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		23.1	15.1	47.1	30.9	35.4	0.0	35.4	30.0	15	3
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	26.9	22.4	27.9	31.7	0.0	31.7	26.9	13	2
Nov	2.1	0.3	0.3	24.3	7.3	93.0	85.7		50.0	0.0	4.4	88.6	60.1	0.0	60.1	51.0	25	5
Dec	-3.9	0.0	0.0	23.1	0.0	68.6	68.6		118.6	0.0	0.0	0.0	30.1	0.0	30.1	25.5	13	2
Total		35.1			586.3	945.9	359.6				325.7	368.2	364.4	252.0	616.4	522.7	261.4	46.8

Table 5-4. Post-Development Conditions Water Balance Inputs

	Contributing Area (ha)	Percent Impervious (%)	Soil Type	Vegetation Type	Root Zone Depth (m)	Soil Moisture Retention Capacity (mm)	Runoff Factor	Evapotranspiration Factor for Impervious Surfaces
To Wetland	1.07	52	Fine sand	Shallow-rooted crops	0.50	50	0.79	0.34
To Right-of-Way	0.09	53	Fine sand	Shallow-rooted crops	0.50	50	0.80	0.34

Table 5-5. Post-Development Conditions Monthly Water Balance (To Wetland)

Month	Daily Average Temp.	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factor	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accumulative Potential Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(m³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0	0.0	0.0	14.6	0.0	14.6	11.5	119	32
Feb	-6.3	0.0	0.0	24.6	0.0	55.9	55.9		242.4	0.0	0.0	0.0	7.3	0.0	7.3	5.8	59	16
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0	0.0	0.0	3.6	0.0	3.6	2.9	30	8
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	19.8	54.3	27.2	25.2	52.4	41.4	426	113
May	12.2	3.9	2.0	37.8	75.6	86.9	11.3		50.0	0.0	49.4	37.5	32.3	226.8	259.1	204.8	2,110	559
Jun	17.5	6.7	2.9	38.4	111.4	83.8	-27.6	-27.6	28.0	-22.0	69.2	36.6	34.5	0.0	34.5	27.3	281	74
Jul	20.0	8.2	3.4	38.7	131.6	89.2	-42.4	-69.9	11.0	-17.0	69.4	36.8	35.6	0.0	35.6	28.2	290	77
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-88.5	8.0	-3.0	65.1	34.5	35.1	0.0	35.1	27.7	285	76
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		23.1	15.1	51.0	27.0	31.0	0.0	31.0	24.5	253	67
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	26.9	24.2	26.1	28.6	0.0	28.6	22.6	232	62
Nov	2.1	0.3	0.3	24.3	7.3	93.0	85.7		50.0	0.0	4.8	88.2	58.4	0.0	58.4	46.2	475	126
Dec	-3.9	0.0	0.0	23.1	0.0	68.6	68.6		118.6	0.0	0.0	0.0	29.2	0.0	29.2	23.1	238	63
Total		35.1			586.3	945.9	359.6				352.9	341.0	337.3	252.0	589.3	465.9	4,798.3	1,271.9

Table 5-6. Post-Development Conditions Monthly Water Balance (To Right-of-Way)

Month	Daily Average Temp.	Monthly Heat Index	Unadjusted Daily Potential Evapotranspiration	Correction Factor	Adjusted Potential Evapotranspiration	Average Precipitation	P-PE	Accumulative Potential Water Loss	Storage	ΔS	Actual Evapotrans- piration	Moisture Surplus	Water Runoff	Snow Melt Runoff	Total Recharge & Runoff	Actual Runoff	Runoff Volume	Recharge Volume
	(°C)		(mm)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(m³)	(m³)
Jan	-7.4	0.0	0.0	24.3	0.0	67.9	67.9		186.5	0.0	0.0	0.0	14.7	0.0	14.7	11.7	11	3
Feb	-6.3	0.0	0.0	24.6	0.0	55.9	55.9		242.4	0.0	0.0	0.0	7.3	0.0	7.3	5.9	5	1
Mar	-1.9	0.0	0.0	30.6	0.0	59.6	59.6		302.0	0.0	0.0	0.0	3.7	0.0	3.7	2.9	3	1
Apr	5.7	1.2	0.9	33.6	30.2	74.1	43.9		50.0	0.0	19.6	54.5	27.3	25.2	52.5	41.9	38	9
May	12.2	3.9	2.0	37.8	75.6	86.9	11.3		50.0	0.0	48.9	38.0	32.6	226.8	259.4	207.4	187	47
Jun	17.5	6.7	2.9	38.4	111.4	83.8	-27.6	-27.6	28.0	-22.0	68.5	37.3	35.0	0.0	35.0	27.9	25	6
Jul	20.0	8.2	3.4	38.7	131.6	89.2	-42.4	-69.9	11.0	-17.0	68.8	37.4	36.2	0.0	36.2	28.9	26	7
Aug	19	7.6	3.2	36.0	115.2	96.6	-18.6	-88.5	8.0	-3.0	64.5	35.1	35.7	0.0	35.7	28.5	26	6
Sep	14.9	5.2	2.5	31.2	78.0	93.1	15.1		23.1	15.1	50.5	27.5	31.6	0.0	31.6	25.2	23	6
Oct	8.3	2.2	1.3	28.5	37.1	77.2	40.2		50.0	26.9	24.0	26.3	28.9	0.0	28.9	23.1	21	5
Nov	2.1	0.3	0.3	24.3	7.3	93.0	85.7		50.0	0.0	4.7	88.3	58.6	0.0	58.6	46.8	42	11
Dec	-3.9	0.0	0.0	23.1	0.0	68.6	68.6		118.6	0.0	0.0	0.0	29.3	0.0	29.3	23.4	21	5
Total		35.1			586.3	945.9	359.6				349.5	344.4	340.7	252.0	592.7	473.8	426.4	107.0

6. Erosion and Sediment Control Plan

Silt fence will be installed along the property boundary in all locations where runoff will discharge from the Site to adjacent lands. The silt fence will serve to minimize the opportunity for water borne sediments to be washed on to the adjacent properties.

Upon completion of the grading, any area not subject to active construction within 30 days will be topsoiled and hydroseeded as per OPSS 572.

Inspection and maintenance of all silt fencing will start after installation is complete. The silt fence will be inspected on a weekly basis during active construction or after a rainfall event of 13mm or greater. Maintenance will be carried out, within 48 hours, on any part of the silt fence found to need repair.

Once catch basins have been installed, the grates will be wrapped in filter cloth. This will be maintained until all building and landscaping has been completed.

Once construction and landscaping have been substantially completed, the silt fence will be removed, any accumulated sediment will be removed, and the landscaping will be completed.

7. Maintenance Plan

To ensure that the stormwater management system continues to function as designed and constructed, we recommend that the following inspections and maintenance activities be completed on an annual basis:

- 1. Maintenance of storm sewers typically consists of cleaning out leaves, debris and accumulated sediment caught in sumps in catch basins and manholes and inspection and cleanout of inlets and outlets annually or as needed.
- 2. The stormwater management facility should be inspected on an annual basis and include the following considerations:
 - a. Is the pond level higher than normal permanent pool elevation > 48 hours after a storm? If yes, the outlet structure may be obstructed check and remove anything obstructing flow out of the pond.
 - b. Is the pond level lower than the normal permanent pool elevation (catch basin top of grate)? If yes, the inlet structure may be obstructed, check and remove anything obstructing the inlet structure or storm sewers upstream.
 - c. Is the vegetation around the stormwater management facility unhealthy or dying? If yes, reestablishment of the upland vegetation is required.
 - d. Is the pond all open water (no bulrushes or vegetation in the water)? Are there areas around the pond with easy access to open water where there should be vegetation? If yes, re-establishment of the wetland vegetation is required.
 - e. Is there an oily sheen on the water near the inlet or outlet? Is the water frothy? Is there an unusual colouring to the water? If yes, this indicates the occurrence of an oil spill, cleanup spill to avoid transfer to the municipal drain.
 - f. Check the sediment depth in the forebay. Is it higher than a third of the depth of the forebay (originally 1.15 metres from bottom of forebay to catch basin top of grate elevation)? If yes, the forebay and potentially the permanent pool must be cleaned of sediment.

8. Site Lighting

The approximate location of the site lighting (poles and fixtures) has been indicated on the preliminary drawings.

The detailed site lighting / photometric plan will be provided at a later stage. The site lighting will be designed to ensure zero light trespass over the property line and compliance with Township standards.

9. Conclusions

In summary, the 79 Sideroad 19 Functional Servicing and Stormwater Management Report includes the following:

- The report background documented all existing reports and standards relevant to the 79 Sideroad 19 development.
- The Township of Centre Wellington (Fergus) criteria were provided and followed for the proposed design.
- The water and sanitary servicing designs have been prepared for the proposed development:
 - A new sanitary sewer will be connected to the existing sanitary municipal sewer on Sideroad 19.
 - A new watermain and two fire hydrants will be connected to the existing municipal watermain on Sideroad 19.
- The storm servicing and stormwater management designs have been prepared for the proposed development:
 - A storm sewer network has been designed to provide conveyance of runoff to the proposed stormwater management facility, ultimately discharging to the existing wetland.
 - Local swales have been designed to convey runoff within the rear yards to the storm sewer network, ultimately discharging to the existing wetland.
 - The stormwater management facility has been designed to provide Enhanced water quality treatment, including the required permanent pool storage and extended detention storage volumes.

Based on the above works, we trust that this is the information required at this time to support approval of the proposed residential development.

Figures

- Figure 1. Location Plan
- Figure 2. Existing Conditions Drainage Areas
- Figure 3. Post-Development Drainage Areas
- Figure 4. Conceptual Sanitary Sewer Catchment Areas
- **Figure 5. Conceptual Storm Sewer Catchment Areas**

---- \\geiconsultants.com\data\Data_Storage\Working\WRIGHTHAVEN HOMES\2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Drafting\Figures\122025_SITE LOCATION.dwg - 6/13/2024

LAMBIER, BRADLEY \\geiconsultants.com\data\Data_Storage\Working\WRIGHTHAVEN HOMES\2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Drafting\Figures\122025 SWM Figures.dwg - 8/21/2024

Appendix A Geotechnical Investigation, JLP Services Inc., April 18, 2023

Geotechnical & Environmental Consultants

Geotechnical Investigation

Proposed Residential Development 79-87 Side Road 19 Township of Centre Wellington (Fergus), Ontario

Client:

WrightHaven Homes Limited 925 Gartshore Street, Units 1 & 2 Fergus, Ontario N1M 2W7

Attention: Steven Wright, President Adam Wright, Project Manager

Type of Document: Geotechnical Report

Project Number: G4670-22-12

JLP Services Inc.

Geotechnical and Environmental Consultants 405 York Road Guelph, ON N1E 3H3

Date Submitted:

April 18, 2023

Cc: GM BluePlan Engineering Ltd.

Table of Contents

1.0)	Introduction	3
2.0)	Site Description	3
3.0)	Field Work	4
4.0)	Subsurface Conditions	5
5.0	D	Groundwater Conditions	7
6.0	D	Discussion and Recommendations	8
	6.1	General	8
	6.2	Site Grading	8
	6.3	Site Services	9
	6.4	Storm Water Management Facility1	1
	6.5	Pavement Design and Construction12	2
	6.6	Building Foundations1	3
	6.7	Basement Walls14	4
	6.8	Floor Slabs1	5
	6.9	Excavation and Groundwater Control10	6
7.	Stateme	ent of Limitation	7
8.	Closure		7

Enclosures

Enclosure 1:	Borehole Location Plan
Enclosure 2 to 6:	Borehole Logs
Enclosure 7 to 9:	Grain Size Distribution Curves

List of Appendices

Appendix A: Limitations and Use of Report

1. Introduction

JLP Services Inc. (JLP) was retained by WrightHaven Homes Limited to carry out a geotechnical investigation for the proposed residential development located at 79-87 Side Road 19 in the Township of Centre Wellington (Fergus), Ontario.

Although final details concerning the proposed residential development are unavailable at the time of this report, it is understood, from the conceptual plan, that the proposed development consists of twenty (20) townhomes with basement and associated municipal site services, access road and storm water management facility.

The purpose of this investigation was to reveal the subsurface soil and groundwater conditions at the site and to determine the relevant soil properties for preliminary recommendations for the design and construction of building foundations, floor slab-on-grade, municipal site services, paved access road, and storm water management facility.

The conclusions and recommendations given in this report are based on the assumption that the design concept mentioned above will proceed into construction. If changes are made in the design phase and/or during construction, JLP must be retained to review these changes. The outcome of this review may lead to modifications to our recommendations or may require additional field and/or laboratory analyses to determine if the proposed changes are acceptable from a geotechnical standpoint.

2. Site Description

The site is located on southeast side of Side Road 19, about 120m northeast of Burnett Court, in Fergus, Ontario. The site is an open space behind existing residential dwellings on 79 Side Road 19 and is about 1.1 hectares in size. It is surrounded by existing residential dwellings and properties on all sides.

The ground surface is gently sloping with the higher grounds at the north side of the property. The difference in ground surface elevations is about 3.35m between the highest and the lowest borehole locations.

3. Field Work

The fieldwork was carried out over the period of January 30 to 31, 2023 and consisted of five (5) boreholes at the approximate locations shown on the Borehole Location Plan, Enclosure 1.

Prior to the commencement of drilling and sampling operations at the site, the borehole locations were cleared of underground utilities by Ontario One Call contractors and by a private utility locator.

The boreholes were advanced to the sampling depths by means of a track-mounted, power auger machine, equipped with solid and hollow stem augers and split spoon samplers for soil sampling. Standard Penetration tests were carried out at frequent intervals of depth and the results are shown on the Borehole Logs as N-values. The subsurface soils were visually examined, logged and sampled at the borehole locations.

Ground water conditions were observed in the open boreholes during the drilling and sampling operations. Monitoring wells were installed in all five (5) boreholes for subsequent groundwater monitoring to be conducted by GM BluePlan Engineering Limited (GMBP).

JLP engineering staff supervised and directed the fieldwork. The layout of borehole locations and the survey of ground surface elevations was carried out in the field by GMBP. The ground surface elevations at the borehole locations are listed in Table 1 below.

Borebole	Ground Surface Elevation
Dorenole	(m±)
MW1	419.211
MW2	417.100
MW3	416.939
MW4	416.302
MW5	415.859

Table 1: Borehole Location and Ground Surface Elevations

4. Subsurface Conditions

Full details of the soil conditions encountered in each borehole are given on the Borehole Logs, Enclosures 2 to 6, inclusive and the following notes are intended to summarize this data.

A deposit of <u>Fill</u>, about 125mm thick, was encountered locally at the surface of Boreholes 2 and 4. The fill generally consisted of brown sand and gravel, some silt.

Based on visual and tactile examination of the soil samples, the fill is considered to be in a generally loose state of compactness and in moist condition.

A deposit of **topsoil**, about 100 to 650mm thick, was encountered at the surface of Boreholes 1, 3 and 5 and below the fill layer in Boreholes 2 and 4 extending to about 0.1 to 0.8 metres below grade. The topsoil consisted of sandy silt, some organics, and was black in colour. The natural moisture content was found to range between 20 and 34%.

It should be noted that the thickness of topsoil may vary significantly between borehole locations and should not be relied upon to estimate the quantity of topsoil for removal.

A deposit of <u>silt</u> was encountered below the topsoil in all the boreholes to depth of about 1.0 to 2.3 metres below grade. This material was brown to grey in colour and consisted of silt, some sand. In Boreholes 1, 2, 3, the silt contained occasional coarse sand inclusions. In Borehole 1, the silt contained trace organic inclusions. In Boreholes 4 and 5, the silt contained scattered organic seams and wood or plant fibres in upper portion. Standard Penetration tests in the silt gave N-values ranging between 5 and 14 blows/300mm, with typical values between 7 and 11 blows/300mm. The natural moisture content was found to range from 8 to 33%, with typical values between 18 and 22%. The relatively high natural moisture content test results in Boreholes 1, 4 and 5 may be attributed to the presence of organics in the deposit.

A typical grain size distribution curve for the silt can be found on Enclosure 7. The grain size analysis results indicate 1% of gravel, 17% of sand, 73% of silt and 9% of clay size particles by weight. The liquid limit (LL), plastic limit (PL) and plasticity index (PI) of the sample of silt is 21.4%, 17.7% and 3.8%, respectively.

Based on the test results and visual and tactile examination of the soil samples, the silt is considered to be in a loose to dense state of compactness and in moist to wet condition.

A deposit of <u>sand</u> was encountered below the silt in all the boreholes extending to depths of about 3.5 and 7.6 metres below grade in Boreholes 1, 3, 4 and 5 and to the termination depth of Borehole 2 at about 5.2 metres below grade. The sand was brown to grey in colour and consisted of trace silt. In Borehole 1, scattered silty seams were observed at about 5.0 metres below grade. Standard Penetration tests in this deposit gave N-values ranging from 6 to 53 blows/300mm, with typical values between 8 and 18 blows/300mm. The natural moisture content was found to range from 12 to 32%, with typical values between 19 and 24%.

A typical grain size distribution curve for the sand can be found on Enclosure 8. The grain size analysis results indicate 0% of gravel, 92% of sand, 7% of silt and 1% of clay size particles by weight.

Based on the test results and visual and tactile examination of the soil samples, the sand is considered to be in a generally loose to compact state of compactness and in moist to wet condition.

A discontinuous deposit of <u>sandy silt till</u> was encountered below the sand in Boreholes 1, 3, 4 and 5 and extending to the termination depths of the boreholes at about 3.7 to 8.2 metres below grade. The sandy silt till was grey in colour and contained trace clay and occasional gravel inclusions. Standard Penetration tests in the sandy silt till gave N-values ranging between 12 and 84 blows/300mm, with typical values between 30 and 53 blows/300mm. The natural moisture content of this material was found to range from 10 to 18%.

A typical grain size distribution curve for the sandy silt till can be found on Enclosure 9. The grain size analysis results indicate 1% of gravel, 21% of sand, 77% of silt and 1% of clay size particles by weight. The liquid limit (LL), plastic limit (PL) and plasticity index (PI) of the sample of sandy silt till are 17.2 %, 13.7% and 3.5 %, respectively.

Based on the test results and visual and tactile examination of the soil samples, the sandy silt till is considered to be in a generally compact to very dense state of compactness and in moist to wet condition.

5.0 Groundwater Conditions

No free water was encountered in any of the boreholes on completion of the fieldwork.

A monitoring well was installed in each of the five (5) boreholes, sealed with bentonite between 0.25 below ground surface and 0.6 metres above top of well screen for groundwater level monitoring. Free water surface levels were measured by personnel from GMBP at depths and elevations noted in Table 2 below.

		March	n 14, 2023	April 5, 2023				
Location	Ground Elevation (m)	Depth Below Existing Grade (m±)	Water Level Elevation (m±)	Depth Below Existing Grade (m±)	Water Level Elevation (m±)			
MW 1	419.211	N/R	N/R	2.141	417.070			
MW 2	417.100	N/R	N/R	0.120	416.980			
MW 3	416.939	1.208	415.731	0.606	416.333			
MW 4	416.302	0.679	415.623	0.198	416.104			
MW 5	415.859	0.667	415.192	0.295	415.564			

Table 2: Observed Groundwater Levels

*N/R denotes "not recorded" due to well not accessible on the date of reading water levels

An examination of the soil samples indicated that the materials were generally moist to wet.

It is noted that no sub-artesian water pressure was encountered in any of the boreholes.

Based on the foregoing measurements and the moisture content profiles of the soil samples, the localized groundwater table at the site is considered to be located at about 0.5 to 1.0 metre below grade, Elevations 416.2m to 415.1m. The groundwater is believed to be originated within the sand deposit above the less permeable sandy silt till.

Seasonal fluctuation of the groundwater level should be anticipated.

6.0 Discussion and Recommendations

6.1 General

The boreholes generally encountered a surficial deposit of topsoil, followed by a deposit of silt, underlain by a deposit of sand, followed by a deposit of sandy silt till. The groundwater level at the site appears to be stabilized at about 0.1 to 2.1 metres below existing grade, Elevations 417.1 to 415.6m.

Although final details concerning the proposed development are unavailable at the time of this report, it is understood, from the conceptual plan, that the proposed development consists of twenty (20) townhomes with basement and associated municipal site services, access road and storm water management facility. Based on the foregoing, the following discussion is therefore considered preliminary. It should be reviewed when more details are available.

6.2 Site Grading

It is assumed some re-grading will be required at the site depending on the final design grades of the proposed residential development.

Following clearing and grubbing as required, the surficial topsoil may be removed and stockpiled for re-use and/or off-site disposal. The design site grades may be achieved by cut and fill operations. All cut and fill to support the proposed building lots, site services and pavement areas should be carried out following the procedure for "engineered fill" construction.

The procedure for "engineered fill" construction would consist of the following:

1. All vegetation, surficial topsoil, fill and any deleterious materials should be removed from the proposed building lots, site services and pavement areas. Any organic, excessively wet or otherwise deleterious materials should not be used as "engineered fill" material.

- Existing groundwater monitoring wells and/or potable water wells, if any, should be properly decommissioned in accordance with the Ontario Water Resources Act, R.R.O. 1990, Ontario (O.Reg.) 903 – amended to O.Reg. 128/03.
- 3. The exposed subgrade should be proof-rolled with a heavy-duty equipment, such as a loaded dump truck, and examined by geotechnical personnel from JLP. Any loose or soft areas encountered during the proof-rolling process should be further sub-excavated and replaced with approved on-site or imported soil materials compacted to a minimum of 98% of the Standard Proctor Maximum Dry Density (SPMDD).
- 4. Low areas can then be brought up to the design pre-grade level with approved on-site or imported soil materials placed in maximum 200mm thick lifts and compacted to a minimum of 98% of the SPMDD.
- 5. Moisture conditioning should be applied to the approved on-site and/or imported soil materials for effective compaction. Some of the on-site soil materials may require air drying before they can be properly compacted.
- 6. The "engineered fill" under all structures to be supported should extend to at least 1.0 metre laterally beyond the edge of their perimeter at the founding level and at least a distance equal to the depths of the fill pad, at the level of the approved subgrade.
- 7. Temporary fill slopes should be no steeper than 1 vertical to 2 horizontal and should be protected from surface erosion.
- 8. All imported fill materials should be assessed by JLP prior to transport to the site in accordance with the "On-Site and Excess Soil Management Regulation", O.Reg. 406/19 and supporting amendments.
- 9. All imported fill materials should be free from organics, cobbles/boulders and debris and should be tested geotechnically by JLP prior to transport to the site.
- 10. All topsoil and unsuitable material removal, subgrade preparation, fill placement and compaction should be monitored on a full-time basis by geotechnical staff from JLP to approve materials and to verify that the specified degree of compaction have been achieved.

6.3 Site Services

The inverts of the proposed site services are not available at the time of this report. However, it is expected that the storm sewer and watermain inverts will be located at depths ranging

between 2.0 and 4.0 metres below the finished grades. All sewers and watermains should be protected from frost actions by at least 1.4m of soil cover or equivalent thermal insulation.

Reference to the Borehole Logs indicates that the subgrade for site services will generally consist of native sand in loose to compact state, sandy silt till in compact to very dense state or "engineered fill" constructed during site grading. The subgrade will generally provide adequate support for the pipes and allow the use of OPSD 802.010 and/or OPSD 802.031 Class 'B' bedding using OPSS.MUNI 1010 Granular 'A' material.

Clear crushed stone should <u>not</u> be used as bedding as fine-grained particles may migrate into the voids of the clear stone and cause undesirable settlements. Where the exposed subgrade is less competent than the materials identified in the Borehole Logs, the bedding thickness may have to be increased.

If the trench excavation is above the observed groundwater level, the sides of the open cut excavation should either be cut back at a side slope of 1 vertical to 1 horizontal or supported with trench box or temporary shoring system.

If the trench excavation is below the observed groundwater level, construction dewatering by means of pumping from sump within the excavation or by pumping from well-points may be required to lower the groundwater level to at least 600 mm below the bottom of the trench to facilitate construction. The sides of the open cut excavation should either be cut back at a side slope of 1 vertical to 2 horizontal or supported with trench box or temporary shoring system.

The excavated materials will be generally suitable for re-use as trench backfill provided that they are free of topsoil, organic material and cobbles/boulders. If the on-site materials become wet, they should be air dried prior to re-use as trench backfill. The trench backfill should be placed in maximum 300mm thick layers and uniformly compacted to at least 95% of its Standard Proctor Maximum Dry Density (SPMDD).

The backfill around maintenance holes, catchbasins, valve chambers, thrust blocks and/or service connections should consist of free-draining granular material, such as the OPSS Granular 'B' Type I or Type II Modified material and compacted to a minimum of 95% of its SPMDD.

To minimize potential problems and wetting of the subgrade material, backfilling operations should follow closely after excavations, so that only a minimal length of trench is exposed at a time. Should construction be carried out in the winter season, particular attention should be given to make sure no frozen material is used for backfill.

Cobbles and/or boulders may be present in the native sandy silt till deposit, and some difficulty or delays may be anticipated during excavation at depth. Cobbles and/or boulders with nominal diameter larger than 150mm should <u>not</u> be re-used as trench backfill.

6.4 Storm Water Management Facility

Grain size distribution curves were prepared for representative samples of the subsoils obtained at the boreholes. These grain size distribution analyses were performed following applicable ASTM laboratory procedures and are found on Enclosures 7 to 9, inclusive.

The grain size distribution curves were compared to the family of curves presented in the Supplementary Standard SB-6 of the 2012 Building Code Compendium. According to the Unified Soils Classification System and taking into consideration the specific physical nature of the soils, the samples in question are considered to have the properties noted in the following Table 3.

		Materia	I			Unified Soils	Estimated	Estimated	
Sample Number	Description	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Classification Group	Co-efficient of Permeability (k) (cm/sec)	T-time (min/cm)	
BH1 SS5	Sand, trace silt	0	92	7	1	(SP)	10 ⁻² - 10 ⁻³	10	
BH3 SS2	Silt, some sand	1	21	77	1	(ML)	10 ⁻⁵ - 10 ⁻⁶	50	
BH5 SS3	Silt, some silt	1	17	73	9	(ML)	10 ⁻⁵ - 10 ⁻⁶	50	

Table 3: Soil Permeability and T-time Estimation

If a storm water management pond is to be constructed for the proposed subdivision, a low permeability liner may be required to maintain a permanent wet pond. The low permeability liner may be constructed with a minimum 1m thick layer of clayey soils conforming to OPSS.MUNI 1205 requirements. Alternatively, a geosynthetic clay liner, such as Bentofix CNSL, or a synthetic liner, such as Nilex Geomembrane PVC 40 mil or similar products, may be used.

If a geosynthetic or synthetic liner is used, a minimum 300mm thick marker layer should be placed above the liner as an indicator/protective soil cover. The liner should be installed as per manufacturer's guidelines and up to a minimum of 0.6m above the design flood level in the pond. An underdrainage system will be required to relieve the hydrostatic uplift against the liner as the bottom of pond is likely lower than the highest observed groundwater level in the vicinity of the pond.

6.5 Pavement Design and Construction

It is envisaged that the subgrade for local roads and collectors will consist of native silt, sand, compacted "engineered fill" and/or compacted trench backfill. All organics or deleterious materials encountered should be stripped from the proposed road pavement areas. The exposed subgrade should be re-compacted from the surface to at least 98% of its standard Proctor maximum dry density (SPMDD) prior to construction of the road pavement. Any loose areas which are detected should be sub-excavated and backfilled with approved imported granular fill. All granular fill materials should be placed in 150 to 200mm thick lifts and compacted to 100% of the SPMDD.

Considering the probable traffic requirements, subgrade conditions and a functional design life of about 25 years, the pavement structure designs listed in Table 4 are recommended:

Pavement Components	Local Road (mm)	Collector Road (mm)
Asphaltic Concrete – HL3	40	40
Asphaltic Concrete – HL4	50	60
Granular 'A' Base Course	150	150
Granular 'B' Type I or Type II Modified Subbase Course	450	600

Table 4: Recommended Pavement Structures

The granular base and sub-base materials should meet Ontario Provincial Standard Specification OPSS.MUNI.1010 and Township of Centre Wellington requirements and should be compacted to 100% of the Standard Proctor Maximum Dry Density (SPMDD) as per OPSS.MUNI.501 requirements. The asphaltic concrete should conform to OPSS.MUNI.1150 and should be compacted to a minimum of 92.0% of the Maximum Relative Density (MRD) as per OPSS.MUNI.310 requirements.

Frequent inspections by geotechnical personnel from JLP Services Inc. should be carried out during construction to verify the compaction of the subgrade, base courses and asphaltic concrete by in-situ density testing using nuclear gauges.

6.6 Building Foundations

The proposed buildings to be constructed at the site are assumed to be primarily townhome residential dwellings with basements. Due to the relatively high groundwater level observed at the site, it may be prudent to raise the overall site grades to ensure the basement level will be higher than the observed groundwater level at the site or to eliminate the basement level in the design of the proposed buildings.

The proposed buildings can be supported on spread footings founded a minimum of 0.3m into the native undisturbed silt or sand in compact state of compactness or into the properly

constructed "engineered fill" and designed to a geotechnical reaction of 100 kPa at Serviceability Limit States (S.L.S.) and a factored geotechnical resistance of 150 kPa at Ultimate Limit States (U.L.S.).

All exterior footings or footings in unheated areas should be located at least 1.4 metres below finished grade or provided with equivalent thermal insulation for adequate frost protection.

Elevation differences between adjacent footings should not be more than a half of the horizontal distance between them.

It is estimated that the total and differential settlements of spread footings designed to these bearing pressures will be less than 25mm and 20mm respectively, which are normally considered acceptable for the proposed structure.

It is recommended that all foundation excavations be inspected by geotechnical personnel from JLP to ensure the founding soils are similar to those identified in the boreholes or are competent "engineered fill" and that they are capable of supporting the design bearing pressures.

Based on the 2012 Building Code Compendium, the classification of soils for seismic design should be based on the average properties of the top 30 metres of the soil profile. The maximum depth of boreholes was 8.2 metres below existing grade and were terminated in very dense sandy silt till. Assuming this deposit extend to depth, the soils at the site may be classified as Site Class 'D' under the site classification for seismic site response of 2012 Building Code Compendium.

6.7 Basement Walls

The basement walls of the proposed buildings may be designed to resist lateral earth pressures and the magnitude of which can be determined from the equation below:

 $p = K(\gamma d + q)$ where; $p = lateral earth pressure, kN/m^2$

К	=	active earth pressure coefficient, K = Ka = 0.33, if
		retaining structure is permitted to move,
		otherwise, K = Ko = 0.50
γ	=	bulk unit weight of backfill, use 20 kN/m ³
d	=	depth below finished grade, metres
q	=	adjacent surcharge acting close to the wall, kN/m ²

The above equation assumes that there is no hydrostatic pressure build up against the basement walls. As such, the basement walls should be dampproofed and protected with a synthetic vertical drainage layer. A perimeter subdrain system should be installed at footing level outside the building envelope to facilitate drainage. The perimeter subdrain system should consist of 150mm diameter perforated pipe surrounded with a minimum of 300mm of 19mm clear stone all wrapped with a filter fabric, such as Texel 100C or other products with equivalent apparent opening size (AOS).

Water collected in the perimeter drainage system should be directed to the local storm drainage system either by gravity or by a permanent sump pump. Surface runoff around the proposed buildings should be directed away from the building.

Alternatively, the basement walls and floors can be sealed tight using waterproofing systems and designed to resist full hydrostatic pressures.

6.8 Floor Slabs

All topsoil and any deleterious materials encountered should be stripped from the proposed building areas. Any loose material encountered should be sub-excavated and replaced with approved fill. The exposed subgrade should be re-compacted from the surface to a minimum of 98% of the Standard Proctor Maximum Dry Density (SPMDD).

Backfill around the footings and basement walls should be compacted to a minimum of 98% of the SPMDD. The backfill may consist of approved on-site soils or imported granular materials, such as OPSS Granular 'B' Type I (natural sand, some gravel). All fills should be placed in 150 to 200mm thick lifts and compacted to a minimum of 98% of the SPMDD.

A layer of free-draining material, such as OPSS.MUNI 1004 19mm Clear Stone, at least 150mm thick and nominally compacted, or Granular 'A' complying with OPSS Form 1010 Specifications and compacted to 100% Standard Proctor maximum dry density should be placed under the floor slabs to provide a uniform bearing surface and act as a moisture barrier.

Ideally, the basement floors should be located at least 0.6 metres above the highest observed groundwater level, otherwise sub-floor drainage systems together with continual pumping from the drainage systems will be required. It is recommended that a sub-floor drainage system be provided for all townhome dwellings with a basement level due to the relatively high groundwater level observed at the site.

Around the perimeter of the proposed buildings, the ground surface should be sloped on a positive grade away from the structure to promote surface water run-off and reduce groundwater infiltration adjacent to the foundations.

Frequent field review and testing by geotechnical personnel from JLP should be carried out during construction to verify the competency of the subgrade and compaction of granular base and/or backfill by in-situ density testing using nuclear gauges.

6.9 Excavation and Groundwater Control

Excavation to reach the footing founding levels will extend to about 0.9 to 1.2 metres below design pre-grades. Excavations must be carried out in accordance with the current Occupation Health and Safety Act (OHSA) and local regulations.

Assuming the proposed buildings will be raised above the highest groundwater level observed, the side slopes of shallow excavation should be cut back to 1 vertical to 1 horizontal as the native silt, sand and/or "engineered fill" using native soils as fill are considered to be Type 3 soils within the meaning of the OHSA.

Minor seepage from groundwater in the native soil deposits or "engineered fill" should be anticipated during construction. However, it should be possible to control and remove seepage

water from these sources or surface water from precipitation by pumping on as and where required basis.

If the proposed buildings are to be constructed below the observed groundwater levels, localized dewatering will be required to drawdown the groundwater level to at least 0.6m below the lowest excavation depth to facilitate construction. Without effective dewatering, excavation to reach the subgrade for footings and/or site services in the silt and sand deposits will be unmanageable. Construction dewatering may consist of vacuum well points and should be designed and installed by a specialist dewatering contractor.

7.0 Statement of Limitation

The Statement of Limitation including the Terms and Conditions of this report is presented on Appendix 'A' is an integral part of this report.

8.0 Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Alexander Lee, M.Sc. (Eng.), P.Eng. Senior Geotechnical Engineer

J. Board, B.A. General Manager

Enclosures

		_	2					BO	RING NUMBER MW1			
		JL	.P						PAGE 1 OF 1			
Geote	chnical & E	nvironmental	Consultants		_							
		Wrighth		PRO		Res	identia	al Subc	livision			
			23-1-30 COMPLETED 23-1-30	GROUNI		N /1	0 211	m	HOLE SIZE 200mm			
			RACTOR Pontil Drilling	_ GROUND ELEVATION _419.211 m HOLE SIZE _200mi GROUND WATER LEVELS:								
DRI	LLING	METHO	DD Hollow Stem	A	T TIME OF D	RILLIN	IG					
LOG	GED	BY Ał	K/PB CHECKED BY _AL	A	t end of df	ULLIN	G					
	TES _			$ar{\mathbf{Y}}$ a	FTER DRILLI	NG _	2.14 m	/ Elev	417.07 m			
ELEV.	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	AMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	ECOVERY %	HEADSPACE VAPOUR	ANAL YSIS	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □			
		<u>, 17, 17</u>				Ľ.	-		20 40 60 80 : : : : : XIX			
419			250mm sandy silt, some organics; black,		6-2-3-3 (5)	54		Metals ORPs				
418	+ <u>1</u> +		SILT some sand, scattered coarse sand	ss 2	5-19-18-14 (37)	75			•			
	- - - 2		(no odour, no staining)		4-13-14-15 (27)	71			•			
417	+ + +		sand, trace to some silt; brown, moist to wet, compact to loose (no odour, no staining)	SS 4	7-9-12-8 (21)	71		PHC, BTEX				
416	- <u>3</u> - -			ss 5	2-5-7-6 (12)	75			•			
415	+ - <u>4</u>				4-4-5-4 (9)	79	-		 ▲ ● ■ 			
	- - - <u>5</u>		occasional silty seams	ss 7	2-6-6-10 (12)	100	-		· · · · · · · · · · · · · · · · · · ·			
414	+			/ \								
413	6			ss	4756		-					
	- - - 7				(12)	83	-		•			
412			7.	3								
85 411	8		SANDY SILT TILL sandy silt, trace clay, occasional gravel inclusions; grey, moist, very dense		20-40-44 (84)	100			•			
www.jpservic			End of Borehole at 8.23 mbgs									
JLP Services Inc., v			Water Level Readings: Date Depth (m) Elevation (m) Mar 14, 2023 N/R N/R Apr 05, 2023 2.14 417.07									

		JL	P					BC	PRING NUMBER MW2 PAGE 1 OF 1				
Geotec	hnical & Er	Wrighth	Consultants naven Homes Limited	PRO	JECT NAME	Res	sidentia	al Subo	livision				
PRC	JECT	NUMB	ERG4670-22-12	PROJECT LOCATION 79 Sideroad 19, Fergus, Ontario									
DAT	E STA	RTED	<u>23-1-30</u> COMPLETED <u>23-1-30</u>	GROUN	D ELEVATIO	N _41	7.1 m		HOLE SIZE 200mm				
DRII	LING	CONTR	RACTOR Pontil Drilling	GROUNI	D WATER LE	VELS	:						
	LING	METHO		A			IG <u></u>	-					
NOT	ES _	BY <u>A</u>	VPB CHECKED BY _AL	a AA Y	TER DRILLI	NG _	G 0.12 m	/ Elev	416.98 m				
ELEV. (m)	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY %	HEADSPACE VAPOUR	ANALYSIS	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80				
417	-	<u>x 1</u> 2 <u>x 1</u> 1 ₁ <u>x 1</u> 2 <u>x 1</u>	FILL 0.4 125mm sand and gravel, some silt; brown moist 0.6	SS 1	8-4-4-6 (8)	75	-	Metals ORPs	•				
416-			TOPSOIL 650mm sandy silt, some organics; black, 1.5	SS 2	2-6-5-5 (11)	75			•				
415-	2		(organic odour, no staining) SILT some sand, occasional coarse sand	SS 3	3-4-4-4 (8)	50		PHC, BTEX	•				
			inclusions; brown, moist, compact (no odour, no staining) SAND	SS 4	2-10-19-14 (29)	71			•				
414-	-		compact (no odour, no staining)	SS 5	5-11-15-9 (26)	67			•				
413-	4												
412-	5		5.2	SS 6	3-4-4-12 (8)	58							
			End of Borehole at 5.18 mbgs	. 1					· · · · · · · · · · · · · · · · · · ·				

Water Level Readings:

<u>Date</u>	<u>Depth (m)</u>	Elevation (m)
Mar 14, 2023	N/R	N/R
Apr 05, 2023	0.12	416.98

CUENT_Wighthansentanset PROJECT NAME_Residential Subdivision PROJECT NUMBER_G4670-22-12 PROJECT NAME_Residential Subdivision DATE STARTED 23-131 COMPLETED 23-131 DRILLING CONTRACTOR_Pont Delling GROUND ELEVATION 19:5/demod 19; fergus, Ontario DRILLING CONTRACTOR_Pont Delling GROUND ELEVATION 19:5/demod 19; fergus, Ontario DRULING CONTRACTOR_Pont Delling CHECKED BY AL NOTES CHECKED BY AL NOTES TOPSOIL ORD MATERIAL DESCRIPTION Underling Status Underling Status Underling Status Underling MATERIAL DESCRIPTION Underling Status Underling Status Underling Status Underling Status Underling Status Underling Status Sandy Silt, some organics; dark (no odour, no staining) Status Sand, trace silt; grey, wet, compact to loose (no odour, no staining) Sandy silt, trace silt; grey, wet, compact to loose (no odour, no staining) Edd Desching the status Undusions; grey, wet, compact to loose (no odour, no staining) Edd Desching the status End Borehole at 518 mbgs			JL	P					BC	PRING NUMBER N PAGE 1	/W3 OF 1		
PROJECT NUMBER G4670-22-12 PROJECT LOCATION 79 Sideroad 19, Forgus, Ontario DATE STARTED 22-131 COMPLETED 23-131 DRILLING CONTRACTOR Pontil Drilling GROUND ELEVATION 416,339 m HOLE Size 200ml DRILLING CONTRACTOR Pontil Drilling GROUND ELEVATION 416,339 m HOLE Size 200ml DRILLING CONTRACTOR Pontil Drilling GROUND WATER LEVELS: AT TIME OF DRILLING	Geoter	hnical & Ei	Wriahth	^{Consultants}	PRO		Res	sidentia	al Subo	livision			
DATE STARTED 23-1-31 COMPLETED 23-1-31 GROUND ELEVATION 416.939 m HOLE SIZE 200m DRULING CONTRACTOR PostI Drilling DRULING METHOD Hollow Stem DRULING METHOD Hollow Stem COGED BY AL/PB CHECKED BY AL NOTES TOPSOIL CHECKED BY AL NOTES SAND SANDY SILT TILL SANDY SILT TILL SA	PRC	JECT	NUMB	ER G4670-22-12	PRO	JECT LOCA		79 Si	deroad	19, Fergus, Ontario			
DRILING CONTRACTOR Ponti Drilling GROUND WATER LEVELS: DRILING METHOD	DAT	E STA	RTED	23-1-31 COMPLETED 23-1-31	GROUND ELEVATION 416.939 m HOLE SIZE200m								
DRILLING METHOD Hollow Stem LOGGED BY AKCPB NOTES X AFTER DRILLING W AFTER DRILLING Matterial Description V AFTER DRILLING Matterial Description V AFTER DRILLING Matterial Description V AFTER DRILLING Matterial Description	DRI	LING	CONT	RACTOR Pontil Drilling	_ GROUND WATER LEVELS:								
LOGGED BY _AK/PB	DRII	LING	METHO	DD Hollow Stem	A	TIME OF D	RILLIN	IG	-				
NOTES # AFTER DRILLING 0.61 m/ Elev 416.33 m ¹ / ₂ = ¹ / ₂	LOG	GED	BY Ał	K/PB CHECKED BY _AL	A	r end of di	RILLIN	G					
Image: Solution of the second seco	NOT	ES _			⊻ AI	TER DRILL	ING _	0.61 m	/ Elev	416.33 m			
416 1 250mm sandy silt, some organics; dark brown, moist vorganic odour, no staining) 0.3 SS 3-3-3-4 79 416 1	ELEV. (m)	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY %	HEADSPACE VAPOUR	ANALYSIS	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80	WELL CONSTRUCTION		
416 Image: Constraining of the statiling of t				TOPSOIL 250mm sandy silt, some organics; dark brown, moist	3 3 3 3 3 3 5 5 5 5 1	3-3-3-4 (6)	79	-	Metals ORPs	•			
(no odour, no staining) becoming grey and saturated at 1.52 mbg SAND sand, trace silt; grey, wet, compact to loose (no odour, no staining) 414 3 Image: Since Si	416 [.]	- 1		SILT some sand, occasional coarse sand inclusions: brown, wet, compact	SS 2	2-3-8-5 (11)	58			•			
sand, trace silt; grey, wet, compact to loose (no odour, no staining) 414 - 3 414 - 3 413 - 4 413 - 4 412 - 5 SANDY SILT TILL sandy silt, trace clay, occasional gravel inclusions; grey, wet, compact no odour, no staining) End of Borehole at 5.18 mbgs Water Level Readings: Date Date Date Date Date Depth (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33 52 - 39 - 18 71	415 [.]	- 2		(no odour, no staining) becoming grey and saturated at 1.52 mbgs SAND	SS 3	3-6-8-7 (14)	71		PHC, BTEX	↓ 			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	414	- 3		sand, trace silt; grey, wet, compact to loose (no odour, no staining)	SS 4	6-6-6-7 (12)	67	-		•			
$413 \frac{4}{412} \frac{5}{5}$ SANDY SILT TILL sandy silt, trace clay, occasional gravel inclusions; grey, wet, compact no odour, no staining) End of Borehole at 5.18 mbgs Water Level Readings: Date Depth (m) Elevation (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33					SS 5	4-6-4-5 (10)	75			•			
412 5 SANDY SILT TILL sandy silt, trace clay, occasional gravel inclusions; grey, wet, compact (no odour, no staining) End of Borehole at 5.18 mbgs Water Level Readings: Date Depth (m) Elevation (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33	413 [.]	4			SS 6	3-2-4-5 (6)	63			•			
Water Level Readings: Date Depth (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33	412 [.]	- 5	i ji ji	SANDY SILT TILL 5.2	9 SS 2 7	2-3-9-18 (12)	71	-					
Water Level Readings: Date Depth (m) Elevation (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33				inclusions; grey, wet, compact (no odour, no staining) End of Borehole at 5.18 mbgs									
				Date Depth (m) Elevation (m) Mar 14, 2023 1.21 415.73 Apr 05, 2023 0.61 416.33									

		JL	.P					BC	DRING NUMBER N PAGE	NW4 1 OF 1			
CLIE	NT	Wrighth	aven Homes Limited	PRO	JECT NAME	Res	identia	l Sub	division				
PRO	JECT	NUMB	ER <u>G4670-22-12</u>	PROJECT LOCATION _79 Sideroad 19, Fergus, Ontario									
DAT	E STA	RTED	<u>23-1-30</u> COMPLETED <u>23-1-30</u>	GROUNI	D ELEVATIO	N 41	6.302 ı	m	HOLE SIZE	200mm			
DRIL	.LING	CONTR	RACTOR Pontil Drilling	GROUNI	O WATER LE	EVELS							
DRIL	.LING	METHO	DD Hollow Stem	A	T TIME OF D	RILLIN	IG						
log Not	GED ES _	BY <u>Ak</u>	K/PB CHECKED BY _AL	A IA ⊻	t end of di Ter drilli	rillin Ing _(G).20 m	/ Elev	v 416.10 m				
(m)	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY %	HEADSPACE VAPOUR	ANALYSIS	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80	WELL CONSTRUCTION			
- 416- -	-		FILL 0 125mm sand and gravel, some silt; brown, moist 0	SS 5	3-3-5-3 (8)	29			•				
- - 415-			TOPSOIL 500mm sandy silt, some organics; black, moist		1-3-5-5 (8)	46			•				
-	2		(organic odour, no staining) / SILT some sand, scattered organic seams and	SS 3	2-2-3-3 (5)	71			•				
-414 - -	3		wood fibres in upper portion; grey, wet, loose (no odour, no staining)	SS 4	3-7-11-7 (18)	50							
- 413- -	-		SAND sand, trace silt; grey, wet, loose to compact (no odour, no staining) 3.0	ss 5	15-15-15- 13 (30)	100			•	····			
			sandy silt, occasional gravel inclusions; grey, wet, compact (no odour, no staining) End of Borehole at 3.66 mbgs										
			Water Level Readings: Date Depth (m) Elevation (m) Mar 14, 2023 0.68 415.62 Apr 05, 2023 0.20 416.10										

		JI	P					BC	PAGE 1 OF				
Geotec	hnical & Er	Wright	Consultants naven Homes Limited	PR	OJECT NAME	E_Res	sidentia	l Sub	division				
PRC	JECT	NUMB	ERG4670-22-12	PROJECT LOCATION _79 Sideroad 19, Fergus, Ontario									
DAT	E STA	RTED	<u>23-1-31</u> COMPLETED <u>23-1-31</u>	_ GROUND ELEVATION _415.859 m HOLE SIZE _200m									
DRII	LING	CONT	RACTOR Pontil Drilling	_ GROUND WATER LEVELS:									
DRII	LING	METH	DD Hollow Stem	1	AT TIME OF D	RILLI	NG						
LOG	GED	BY A	K/PB CHECKED BY AL	'	AT END OF DI	RILLIN	IG						
NOT	ES _			Ţ	AFTER DRILL	NG _	0.30 m	/ Elev	/ 415.56 m				
ELEV. (m)	DEPTH (m)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY %	HEADSPACE VAPOUR	ANALYSIS	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80				
	- - - -		TOPSOIL 100mm sandy silt, some organics; black (organic odour, no staining)	ss 1	3-3-4-4 (7)	42			•				
415-			SILT some sand, scattered organic seams and plant fibres in upper portion; brown, wet, loose		2-2-3-5 (5)	63			•				
414-	2		(no odour, no staining) _{1.8} SAND sand, trace silt; brown, mottled grey, wet,		6 4-6-4-5 (10)	67							
413-	3		loose to very loose (no odour, no staining) becoming grey at 2.3 mbgs		5 5-6-3-3 (9)	58			↓ ●				
	- - -			ss 5	5 1-1-2-6 (3)	71			•				
412-	4		4.0 SANDY SILT TILL sandy silt, trace clay, occasional gravel inducional gravel	ss 6	3 11-17-36- 37 (53)	67			•				
			End of Borehole at 4.42 mbgs										
			Date Depth (m) Elevation (m) Mar 14, 2023 0.67 415.19 Apr 05, 2023 0.29 415.56										

JLP Services Inc., www.jlpservices.ca

JLP SERVICES INC.

JLP SERVICES INC.

JLP SERVICES INC.

Appendix A – Limitations and Use of Report

REPORT TERMS AND CONDITIONS

NOTICE: THE FOLLOWING PROVISIONS SET FORTH IMPORTANT QUALIFICATIONS AND LIMITATIONS ON THE FINDINGS AND RECOMMENDATIONS IN THE REPORT AS WELL AS THE USE OF, AND RELIANCE ON, THE REPORT.

- 1. **DEFINITIONS**. The following capitalized terms have the following meanings:
 - (a) **"Additional Investigations**" means investigations that JLP has indicated to the Client should be undertaken to take into account any Out-of-Scope Requirements, but that are not otherwise specifically within the scope of investigations conducted for the purpose of the Report.
 - (b) **"Applicable Laws**" means and includes without limitation all applicable provincial laws, regulations, guidelines, policies, standards, protocols, and objectives administered by the Ministry of the Environment and Climate Change or any other duly-constituted governmental authority, all as in force as of the date of the Report.
 - (c) "Client" means the Client as referred to in the Report.
 - (d) **"Client Information**" means the information, representations, and instructions provided by the Client, the Client's representatives, and/or others and upon which the Report is based, in whole or in part.
 - (e) **"Findings**" means the evaluations and conclusions set forth in the Report.
 - (f) "JLP" means JLP Services Inc.
 - (g) **"Out-of-Scope Requirements**" means special concerns or requirements of the Client in respect of the subject matter of the Report.
 - (h) **"Recommendations**" mean the findings and recommendations referred to in the Report, taking into account any Out-of-Scope Requirements that were disclosed to JLP prior to the date of the Report.
 - (i) "Report" means the report to which these Terms and Conditions are attached and form part.
 - (j) "Report Documents" means the underlying documents, records, data, and files, in any medium whatsoever, generated in connection with the preparation of the Report, including without limitation, the instructions and objectives communicated to JLP by the Client, communications between JLP and the Client, and other reports, proposals, or documents prepared by JLP for the Client in connection with the Site.
 - (k) "Site" means the site in respect of which the Report was prepared.
 - (1) **"Site Conditions**" means Site conditions known as a result of, or reasonably imputed by, the investigations that were undertaken as of the date of the Report.
- 2. BASIS OF REPORT. The Report is based on the Site Conditions. Any changes to the Site Conditions after the date of the Report that could or will affect the Site Conditions may or will have a corresponding effect on the Recommendations. The Report does not take into account any (a) Additional Investigations that were not undertaken, or (b) Out-of-Scope Requirements that were not communicated prior to completion of the investigations that were been undertaken as of the date of the Report. Where recommended field services are referred to, they are the minimum services necessary to determine compliance of construction with Applicable Laws,

generally accepted industry-standard practices, and the Recommendations.

3. <u>RELIANCE & USE</u>. The Report has been prepared only for the Site and the related design, development, building, or building assessment objectives identified by the Client. The Findings and Recommendations are based on the Site Conditions and the Client Information. In preparing the Report, JLP has relied upon the Client Information and disclaims any responsibility for any inaccuracy, misstatement, omission, unintentional misrepresentation, or other deficiency contained in the Report as a result of such reliance. Unless specifically stated otherwise, the applicability and reliability of the Findings and the Recommendations expressed in the Report are only valid to the extent that (a) there has been no material change to or variation from any of the Client Information, (b) the Client Information contains no untrue statement of a material fact, or (c) the Client Information omits no statement of a material fact necessary in order to make the Client Information not misleading.

The Report and the Findings and Recommendations are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the prior written consent of JLP, which may be arbitrarily withheld or conditioned.

RELIANCE UPON THE REPORT OR ANY OF THE DETERMINATIONS MADE HEREIN BY A THIRD PARTY WITHOUT JLP'S CONSENT IS PROHIBITED AND JLP MAKES NO REPRESENTATION, GUARANTEE, OR WARRANTY IN FAVOUR OF ANY THIRD PARTY WITH RESPECT TO THE REPORT WHATSOEVER. JLP FULLY DISCLAIMS, AND WILL HAVE NO LIABILITY FOR, ANY LOSS, DAMAGES, OR EXPENSES WHICH ANY THIRD PARTY MAY INCUR OR SUFFER AS A RESULT OF THE USE OF OR RELIANCE ON THIE REPORT WHERE JLP HAS NOT EXPRESSLY AUTHORIZED SAME. ANY THIRD PARTY WHO RELIES ON THE REPORT TO ANY EXTENT DOES SO AT SUCH PARTY'S OWN RISK AND COMPLETELY WAIVES ANY AND ALL CLAIMS AGAINST JLP IN CONNECTION WITH THE REPORT, REGARDLESS OF THE THEORY OF LAW (WHETHER IN CONTRACT, TORT, OR ANY THEORY OF LAW COMING INTO EXISTENCE HEREAFTER).

- 4. **STANDARD OF CARE**. The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances. No other warranty, expressed or implied, is made or intended in the Report. It is intended that the Findings and Recommendations are meant to assist in reducing the Client's risk associated with environmental impairment at the Site. The Report should not be considered risk mitigation.
- 5. **ENTIRE REPORT**. The Report also includes the Report Documents. In order to properly understand the Findings and Recommendations, reference must be made to the Report in its entirety. JLP is not responsible for use by any party of a part of the Report only.
- 6. <u>GOVERNING FORMAT</u>. Notwithstanding that JLP may have submitted an electronic version of the Report or any document forming part of the Report, only the signed and sealed physical copy of the Report shall be deemed to be the original and in the event of any dispute or discrepancy, the physical copy shall govern. JLP makes no representation about the compatibility of its electronic or digital file format with the Client's current or future software and/or hardware systems. The documents described herein are JLP's instruments of professional service and shall not be altered without the written consent of JLP.

7. **GENERAL LIMITATIONS**.

- (a) Unless specifically stated otherwise, the Report does not contain environmental consultingadvice.
- (b) The Report contains no opinion or determination as to any matters governed by laws other than the laws of the Province of Ontario and the federal laws of Canada applicable therein as of the date hereof.
- (c) During any future development of the Site, conditions not observed during JLP's investigations may become apparent. If this occurs, JLP should be contacted to assess the situation and whether there is a need for additional testing.

Functional Servicing and Stormwater Management Report Proposed Residential Development 79 Sideroad 19 Township of Centre Wellington (Fergus), Ontario August 2024

Appendix B Preliminary Sanitary Sewer Design Sheet

q = average daily pe I = unit of peak extra A = Tributary area in M = Peaking factor Q(p) = peak populati Q(i) = peak extraneo	r capita flow (350 L/cap.d) neous flow (0.15 L/ha/s) gross hectares ion flow (L/s) pus flow (L/s)	PREI	-IMINA TOWN	RY S of cen		ARY S	SEWE	ER DES	BIGN		$M = 1 + \underline{14}$ $4 + Q(p) = \underline{PqN}$ 86.4 $Q(i) = IA$ $Q(d) = Q(p)$	where (P) ^{1/2} (L/s)) + Q(i) (L/s)	P is populatio	on in 1000's	
Q(d) = peak design f	flow	079 Side Road 19 - Residential Development									August 14, 2024				
									Designed By: BL			C	Checked By:		
Location															
From	То	Individual Population	Cumulative Population	Individual Area (ha)	Cumulative Area	Peaking Factor (M)	Pop. Flow Q(p) (L/s)	Peak Extraneous Flow Q(i) (L/s)	Flow Q(d) (m3/s)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (m ³ /s)	Full Flow Velocity (m/s)	Actual velocity at Q(d)
								-							
Catchment 1	Side Road 19 Ex. Sanitary	70	70	0.67	0.67	4.283	1.21	0.101	0.0013	200	0.013	0.50	0.023	0.738	0.384

Functional Servicing and Stormwater Management Report Proposed Residential Development 79 Sideroad 19 Township of Centre Wellington (Fergus), Ontario August 2024

Appendix C Preliminary Storm Sewer Design Sheet

												Fergus Sha	and Dam IDF	Curves	
		DDEI	іклікі	ADV (STUE				CICN	J		A =		1459.072	
		FNEL			SIUR				2101			B =		13.69	
					5 Year D)esign						C=		0.85	
						_						Intensity = A	A / (t + B) ^C		
	TOWNSHIP OF CENTRE WELLINGTON (FERGUS)														
													³ /s)		
	079 Side Road 19 - Residential Development												August 15, 2024		
										Designed By:	BL	C	Checked By:		
Location	Location Time of Proposed Sew												ver		
Catchment Area	Area (ha)	Runoff Coefficient	AxC	Cumulative A x C	Conc. (min.)	Intensity (mm/hr)	Flow (m³/s)	Length (m)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (m ³ /s)	Full Flow Velocity (m/s)	Time of Flow (min.)	
1	0.16	0.45	0.07	0.07	10.00	99.01	0.020	63.0	300	0.013	0.50	0.07	0.97	1.09	
2	0.45	0.45	0.20	0.27	11.09	95.31	0.073	75.0	375	0.013	0.50	0.12	1.12	1.11	
3	0.09	0.45	0.04	0.04	10.00	99.01	0.011	9.0	300	0.013	0.50	0.07	0.97	0.16	
N/A	0.00	0.45	0.00	0.32	12.20	91.82	0.080	9.0	375	0.013	0.50	0.12	1.12	0.13	

Functional Servicing and Stormwater Management Report Proposed Residential Development 79 Sideroad 19 Township of Centre Wellington (Fergus), Ontario August 2024

Appendix D MIDUSS Hydrologic Modelling

н	MIDUSS Output>"
н	MIDUSS version Version 2.25 rev. 473"
н	MIDUSS created Sunday, February 07, 2010"
" 10	Units used: ie METRIC"
"	Job folder: W:\Guelph\122-2022\"
н	122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
Calcs\2024-04-11	SWM Pond"
"	Output filename: 122025 Pre 2vr.out"
н	Licensee name: gmbp"
н	Company "
п	Date & Time last used: 4/15/2024 at 11:56:22 AM"
" 31 TI	ME PARAMETERS"
" 5.000	Time Step"
" 180.000	Max. Storm length"
" 1500.000	Max. Hydrograph"
" 32 ST	DRM Chicago storm"
" 1	Chicago storm"
" 695.050	Coefficient A"
" 6.387	Constant B"
" 0.793	Exponent C"
" 0.375	Fraction R"
" 180.000	Duration"
" 1.000	Time step multiplier"
" Ma:	ximum intensity 99.625 mm/hr"
" To	tal depth 33.014 mm"
" 6	002hvd Hvdrograph extension used in this file"
" 33 CA	TCHMENT 100"
" 1	Triangular SCS"
"1	Equal length"
" 2	Horton equation"
" 100	EXTERNAL"
" 25.000	% Impervious"
" 3.450	Total Area"
" 150.000	Flow length"
" 2.000	Overland Slope"
" 2.588	Pervious Area"
" 150.000	Pervious length"
" 2.000	Pervious slope"
" 0.863	Impervious Area"
" 150.000	Impervious length"
" 2.000	Impervious slope"
" 0.250	Pervious Manning 'n'"
" 75.000	Pervious Max.infiltration"
" 12.500	Pervious Min.infiltration"
" 0.250	Pervious Lag constant (hours)"
" 5.000	Pervious Depression storage"
" 0.015	Impervious Manning 'n'"
" 0.000	Impervious Max.infiltration"
" 0.000	Impervious Min.infiltration"
" 0.050	Impervious Lag constant (hours)"

"	1.500 Impervious Depression	on storage"			
"	0.180 0.00	0.000	0.000 0	.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	п
"	Surface Area	2.588	0.863	3.450	hectare"
"	Time of concentration	72.493	5.835	11.857	minutes"
"	Time to Centroid	128.681	91.788	95.121	minutes"
"	Rainfall depth	33.014	33.014	33.014	mm"
"	Rainfall volume	854.24	284.75	1138.98	c.m"
"	Rainfall losses	31.976	1.664	24.398	mm"
"	Runoff depth	1.038	31.350	8.616	mm"
"	Runoff volume	26.85	270.39	297.25	c.m"
"	Runoff coefficient	0.031	0.950	0.261	н
	Maximum flow	0.007	0.179	0.180	c.m/sec"
	40 HYDROGRAPH Add Runoff	"			
	4 Add Runoff "				
	0.180 0.18	0.000	0.000"		
	33 CATCHMENT 200"		0.000		
	1 Triangular SCS"				
	1 Equal length"				
	2 Horton equation"				
	200 STTF"				
	20 000 % Impervious"				
	0 990 Total Area"				
	20.000 Flow length"				
	2 000 Overland Slope"				
	0 792 Pervious Area"				
	20 000 Pervious length"				
	2 000 Pervious slope"				
	0 198 Impervious Area"				
	20 000 Impervious length"				
	2 000 Impervious slope"				
	0 250 Pervious Manning 'n				
	75 000 Pervious Max infilt	nation"			
	12 500 Pervious Min infilt	ration"			
	0 250 Pervious Lag consta	nt (hours)"			
	5 000 Pervious Depression	storage"			
	0.015 Impervious Manning	'n'"			
	0.019 Impervious Nathing 0.000 Impervious Max infi	ltration"			
	0.000 Impervious Maximi	ltration"			
	0.000 Impervious Lag const	tant (hours)			
	1 500 Impervious Depressi	on stonage")		
		a a aaa	0 000	m/soc"	
	0.044 0.100 Catchmont 200	Donvious		Total Anoa	
				A OOA	hoctopo"
	Time of concentration	21 640	1 7/2	1 096	minutos"
	Time to Controid	21.040 01 202	1./42 05 <i>6</i> 1/	4.000 96 20E	minutes
	IIIIE LO CEILLIOID Painfall danth	22.011 22.011	03.014 22 014	22 014	milliules
	Rainiaii uepun Poinfoll volumo	22.014 261 17	55.014 65 27	22.014 226 01	 c m"
	Rainidii VOlume	201.4/ 21 077	1 962	220.04 25 071	C.III mm"
	Kallitall losses	21.9// 1 027	1,902 21 052	23.9/4	······
	кипотт аертп	1.03/	220012	1.040	

"	Rur	off volume	8.21		61.48	69.69	c.m"
"	Rur	off coefficient	0.031		0.941	0.213	"
"	Мах	cimum flow	0.006	; ;	0.044	0.044	c.m/sec"
"	40 HYD	ROGRAPH Add Runof	f "				
"	4	Add Runoff "					
"		0.044 0.	215	0.000	0.000"		
"	33 CAT	CHMENT 300"					
"	1	Triangular SCS"					
"	1	Equal length"					
	2	Horton equation"					
	300	SITE WETLAND"					
	0.000	% Impervious"					
	0.080	Total Area"					
	25.000	Flow length"					
	2.000	Overland Slope"					
	0.080	Pervious Area"					
	25.000	Pervious length"					
	2.000	Pervious slope"					
	0.000	Impervious Area					
	25.000	Impervious length					
	2.000	Impervious slope"	الما				
	0.250	Pervious Manning	[]]+na+ion	п			
	12 500	Pervious Max. 1111	1tration				
	0 250	Pervious Min. 1011	tont (bo	۱ ۱۳۲۲ (۱۳۲۲)			
	5 000	Pervious Lag Cons	on stona	urs)			
	0 015	Tmnervious Mannin	011 St016 σ 'n'"	ige			
	0.015	Impervious Max in	δ " filtrati	on"			
	0.000	Impervious Min in	filtrati	on"			
	0.000	Impervious Lag co	nstant (hours			
	1,500	Impervious Depres	sion sto	rage"			
		0.001 0.	215	0.000	0.000	.m/sec"	
"	Cat	chment 300	Pervi	.ous	Impervious	Total Area	"
	Sur	face Area	0.080)	0.000	0.080	hectare"
"	Tin	ne of concentratio	n 24.74	0	1.991	24.740	minutes"
"	Tin	ne to Centroid	93.72	22	86.074	93.722	minutes"
"	Rai	infall depth	33.01	.4	33.014	33.014	mm"
"	Rai	infall volume	26.41		0.00	26.41	c.m"
"	Rai	nfall losses	31.97	'7	1.935	31.977	mm"
"	Rur	noff depth	1.037	,	31.079	1.037	mm"
"	Rur	noff volume	0.83		0.00	0.83	c.m"
"	Rur	off coefficient	0.031		0.000	0.031	"
"	Мах	cimum flow	0.001		0.000	0.001	c.m/sec"
	40 HYD	ROGRAPH Add Runof	f "				
	4	Add Runoff "					
		0.001 0.	215	0.000	0.000"		
	33 CAT	CHMENI 400"					
	1	Iriangular SCS"					
	1	Equal length"					
	2	Horton equation"					

"	400	SITE FRONT"						
"	60.000	% Impervious"						
"	0.050	Total Area"						
"	10.000	low length"						
"	2.000	Overland Slope"						
"	0.020	Pervious Area"						
"	10.000	Pervious length"						
"	2.000	Pervious slope"						
"	0.030	Impervious Area"						
"	10.000	Impervious length"						
"	2.000	Impervious slope"						
"	0.250	Pervious Manning 'n						
"	75.000	Pervious Max.infilt	ration"					
"	12.500	Pervious Min.infilt	ration"					
"	0.250	Pervious Lag consta	nt (hours)"					
"	5.000	Pervious Depression	storage"					
"	0.015	Impervious Manning	'n'"					
"	0.000	Impervious Max.infi	ltration"					
"	0.000	Impervious Min.infi	ltration"					
"	0.050	Impervious Lag const	tant (hours))"				
"	1.500	Impervious Depression	on storage"					
"		0.007 0.21	5 0.000	0.000	c.m/sec"	1		
"	Ca	tchment 400	Pervious	Impervious	Total A	rea "		
"	Su	rface Area	0.020	0.030	0.050	hectare"		
"	Ti	me of concentration	14.277	1.149	1.439	minutes"		
"	Ti	me to Centroid	86.060	84.800	84.828	minutes"		
"	Ra	infall depth	33.014	33.014	33.014	mm"		
"	Ra	infall volume	6.60	9.90	16.51	c.m"		
"	Ra	infall losses	31.976	2.325	14.185	mm"		
"	Ru	noff depth	1.038	30.689	18.829	mm"		
	Ru	noff volume	0.21	9.21	9.41	c.m"		
	Ru	noff coefficient	0.031	0.930	0.570	"		
"	Ma	ximum flow	0.000	0.007	0.007	c.m/sec"		
	40 HY	DROGRAPH Add Runoff '						
	4	Add Runoff "						
		0.007 0.220	0.000	0.000"				
"	38 ST	ART/RE-START TOTALS	400"					
"	3	Runoff Totals on EX	IT"					
	To	tal Catchment area		4	.570	hectare"		
	To	tal Impervious area		1	.091	hectare"		
n	To	tal % impervious		23	.862"			
11	19 EX	IT"						

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: W:\Guelph\122-2022\"
"		122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
Cal	cs\2024-04-11	SWM Pond"
"		Output filename: 122025 Pre 5yr.out"
"		Licensee name: gmbp"
"		Company "
"		Date & Time last used: 4/15/2024 at 11:59:02 AM"
" 3	1 TII	ME PARAMETERS"
"	5.000	Time Step"
"	180.000	Max. Storm length"
"	1500.000	Max. Hydrograph"
" 3	2 ST(ORM Chicago storm"
"	1	Chicago storm"
"	1459.072	Coefficient A"
"	13.690	Constant B"
"	0.850	Exponent C"
"	0.375	Fraction R"
"	180.000	Duration"
"	1.000	Time step multiplier"
"	Max	ximum intensity 119.775 mm/hr"
"	To	tal depth 49.792 mm"
"	6	005hyd Hydrograph extension used in this file"
" 3	3 CA ⁻	TCHMENT 100"
"	1	Triangular SCS"
"	1	Equal length"
"	2	Horton equation"
"	100	EXTERNAL"
"	25.000	% Impervious"
"	3.450	Total Area"
"	150.000	Flow length"
"	2.000	Overland Slope"
"	2.588	Pervious Area"
"	150.000	Pervious length"
"	2.000	Pervious slope"
"	0.863	Impervious Area"
"	150.000	Impervious length"
	2.000	Impervious slope"
	0.250	Pervious Manning 'n'"
	75.000	Pervious Max.infiltration"
	12.500	Pervious Min.infiltration"
	0.250	Pervious Lag constant (hours)"
	5.000	Pervious Depression storage"
	0.015	Impervious Manning 'n'"
	0.000	Impervious Max.intiltration"
	0.000	Impervious Min.infiltration"
	0.050	Impervious Lag constant (hours)"

"	1.500 Impervious Depression	on storage"				
"	0.252 0.000	0.000	0.000 0	.m/sec"		
"	Catchment 100	Pervious	Impervious	Total Area	п	
"	Surface Area	2.588	0.863	3.450	hectare"	
"	Time of concentration	42.120	5.421	20.225	minutes"	
"	Time to Centroid	115.206	89.951	100.139	minutes"	
"	Rainfall depth	49.792	49.792	49.792	mm"	
"	Rainfall volume	1288.36	429.45	1717.81	c.m"	
"	Rainfall losses	38.982	1.829	29.694	mm"	
"	Runoff depth	10.810	47.963	20.098	mm"	
"	Runoff volume	279.70	413.68	693.38	c.m"	
	Runoff coefficient	0.217	0.963	0.404	п	
	Maximum flow	0.093	0.238	0.252	c.m/sec"	
	40 HYDROGRAPH Add Runoff					
	4 Add Runoff "					
	0.252 0.252	2 0.000	0.000"			
	33 CATCHMENT 200"		0.000			
	1 Triangular SCS"					
	1 Equal length"					
	2 Horton equation"					
	200 STTF"					
	20 000 % Impervious"					
	0 990 Total Δrea"					
	20 000 Flow length"					
	2 000 Overland Slope"					
	0 792 Pervious Area"					
	20 000 Pervious length"					
	2 000 Pervious slope"					
	$\begin{array}{c} 2.000 \text{renvious stope} \\ 0.198 \text{Impenvious Area"} \end{array}$					
	20.000 Impervious length"					
	20.000 Impervious rengen					
	0 250 Dervious Manning 'n					
	75 000 Pervious Max infilt	nation"				
	12 500 Pervious Min infilt	ration"				
	0 250 Pervious Lag consta	nt (hours)"				
	5 000 Pervious Depression	storage"				
	0.015 Impervious Manning	'n'"				
	0.015 Impervious Manning 0.000 Impervious May infi	" ltration"				
	0.000 Impervious Min infi	ltration"				
	0.050 Impervious Lag const	tant (houne)				
	1 500 Impervious Depressi	on stonage")			
		on scorage	0 000	m/soc"		
	$\begin{array}{c} 0.091 \\ \text{Catchment} 200 \end{array}$			Total Anoa		
				A OOA	hoctopo"	
	Time of concentration	10 572	1 619	6 910	minutos"	
	Time to Controid	12.J/J	1.010 1.010	0.017	minutes	
	IIIIE LO CEILLIOIU Painfall danth	00.000 10 707	04.332 10 703	00.221 10 702	milliules	
	Rainiaii uepun Painfall valuma	47./72 20/ 25	47./72	47./72	 c m"	
	Rainidii VOlume	274.22 20 A25	20.22 2 105	472.74 21 665	C.III mm"	
	Raintall losses	250.55	2.100	2003	······	
	κυπόττ αέρτη	TQ'\2\	4/.00/	10.12/		
"	Runoff	F volume	85.19	94.26	179.45	c.m"
---	------------------------	--	--------------	------------	------------	----------
"	Runoff	f coefficient	0.216	0.956	0.364	"
"	Maximu	um flow	0.063	0.056	0.091	c.m/sec"
"	40 HYDROG	GRAPH Add Runoff	"			
"	4 Add	d Runoff "				
"		0.091 0.33	1 0.000	0.000"		
"	33 CATCHM	1ENT 300"				
"	1 Tri	iangular SCS"				
"	1 Equ	ual length"				
	2 Hor	rton equation"				
	300 SI1	FE WETLAND"				
	0.000 % 1	[mpervious"				
	0.080 Tot	al Area"				
	25.000 Fic	w length"				
	2.000 Ove	erland Slope"				
	0.080 Per	rvious Area"				
	25.000 Per	rvious length"				
	2.000 Per	rvious slope"				
	0.000 Imp	pervious Area				
	25.000 Imp	pervious length"				
	2.000 Imp	pervious siope" Nervious Manning 'n				
	0.250 Per	vious Manning n	nation"			
	12 500 Per	vious Max.Infilt	nation"			
	12.300 Per	vious Hin.iniit	nt (bounc)"			
	5 000 Per	vious Lag consta	stonage"			
	0.015 Tmr	vious Depression Dervious Manning	'n'"			
	0.015 Imp 0.000 Tmr	pervious Manning	ltration"			
	0.000 Imp 0.000 Tmr	pervious Min infi	ltration"			
	0.050 Imp	pervious lag cons	tant (hours)) "		
	1.500 Imr	pervious Depressi	on storage"	/		
	P	0.006 0.33	1 0.000	0.000	.m/sec"	
"	Catchn	nent 300	Pervious	Impervious	Total Area	"
	Surfac	ce Area	0.080	0.000	0.080	hectare"
"	Time c	of concentration	14.375	1.850	14.375	minutes"
"	Time t	co Centroid	89.770	84.851	89.770	minutes"
"	Rainfa	all depth	49.792	49.792	49.792	mm"
"	Rainfa	all volume	39.83	0.00	39.83	c.m"
"	Rainfa	all losses	38.999	2.189	38.999	mm"
"	Runoff	f depth	10.793	47.602	10.793	mm"
"	Runoff	F volume	8.63	0.00	8.63	c.m"
"	Runoff	f coefficient	0.217	0.000	0.217	II.
"	Maximu	um flow	0.006	0.000	0.006	c.m/sec"
	40 HYDROG	GRAPH Add Runoff	"			
	4 Add	d Runoff "				
		0.006 0.33	4 0.000	0.000"		
	33 CATCHM	1ENI 400"				
	1 Iri	Langular SCS"				
	1 Equ	Jai length"				
	2 Hor	ton equation				

"	400	SITE FRONT"				
"	60.000	% Impervious"				
"	0.050	Total Area"				
"	10.000	Flow length"				
"	2.000	Overland Slope"				
"	0.020	Pervious Area"				
"	10.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.030	Impervious Area"				
"	10.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag const	tant (hours))"		
"	1.500	Impervious Depression	on storage"			
"		0.009 0.334	4 0.000	0.000	c.m/sec"	I
"	Ca	tchment 400	Pervious	Impervious	Total A	rea "
"	Su	rface Area	0.020	0.030	0.050	hectare"
"	Ti	me of concentration	8.295	1.068	2.029	minutes"
"	Ti	me to Centroid	84.311	83.761	83.834	minutes"
"	Ra	infall depth	49.792	49.792	49.792	mm"
"	Ra	infall volume	9.96	14.94	24.90	c.m"
"	Ra	infall losses	38.990	2.855	17.309	mm"
"	Ru	noff depth	10.802	46.936	32.483	mm"
	Ru	noff volume	2.16	14.08	16.24	c.m"
	Ru	noff coefficient	0.217	0.943	0.652	"
"	Ma	ximum flow	0.002	0.009	0.009	c.m/sec"
	40 HY	DROGRAPH Add Runoff '	11			
	4	Add Runoff "				
		0.009 0.342	2 0.000	0.000"		
"	38 ST	ART/RE-START TOTALS	400"			
"	3	Runoff Totals on EX	IT"			
	To	tal Catchment area		4	.570	hectare"
	To	tal Impervious area		1	.091	hectare"
	To	tal % impervious		23	.862"	
11	19 EX	IT"				

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: B:\Working\WRIGHTHAVEN HOMES\"
"		2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
Ca	alcs\2024-06-06	SWM Pond"
		Output filename: 122025 Pre 100vr.out"
		Licensee name: gmbp"
		Company
		Date & Time last used: 6/21/2024 at 9:33:27 AM"
	31 TT	ME PARAMETERS"
	5.000	Time Step"
	180.000	Max. Storm length"
	1500.000	Max. Hydrograph"
	32 ST	ORM Chicago storm"
	1	Chicago storm"
	6933 019	Coefficient A"
	34 669	Constant B"
	0 998	Exponent ("
	0.375	Exponence C
	180 000	Duration"
	1 000	Time step multiplien"
	1.000 Ma	vinum intensity 174.700 mm/hm
	Па	$\frac{1}{4.792} \frac{1}{100} \frac{1}{4.792} \frac{1}{100} $
	10	100bvd Hydnograph oxtoncion ycod in this filo"
	22 CA	TCHMENT 100"
	55 CA 1	Thiangulan SCC"
	1	Fausl longth"
	1	Equal tengen
	2 100	
	25 000	exiennal
	25.000	
	5.450	Total Area
	120.000	Flow length
	2.000	Overland Slope
	2,000	Pervious Area
	150.000	Pervious length
	2.000	Pervious slope
	0.863	Impervious Area
	150.000	Impervious length"
	2.000	
	0.250	Pervious Manning 'n'"
	/5.000	Pervious Max.infiltration"
	12.500	Pervious Min.infiltration
	0.250	Pervious Lag constant (nours)"
	5.000	Pervious Depression storage"
	0.015	Impervious Manning 'n'"
	0.000	Impervious Max.infiltration"
	0.000	Impervious Min.infiltration"
"	0.050	Impervious Lag constant (hours)"

"	1.500 Impervious Depression	on storage"			
"	0.624 0.00	0.000	0.000 0	.m/sec"	
"	Catchment 100	Pervious	Impervious	Total Area	п
"	Surface Area	2.588	0.863	3.450	hectare"
"	Time of concentration	26.519	4.660	18.100	minutes"
"	Time to Centroid	108.723	87.693	100.623	minutes"
"	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	2534.07	844.69	3378.76	c.m"
"	Rainfall losses	47.001	2.217	35.805	mm"
"	Runoff depth	50.934	95.718	62.130	mm"
"	Runoff volume	1317.91	825.57	2143.47	c.m"
"	Runoff coefficient	0.520	0.977	0.634	п
"	Maximum flow	0.468	0.372	0.624	c.m/sec"
"	40 HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
"	0.624 0.624	4 0.000	0.000"		
"	33 CATCHMENT 200"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	200 SITE"				
"	20.000 % Impervious"				
"	0.990 Total Area"				
"	20.000 Flow length"				
"	2.000 Overland Slope"				
"	0.792 Pervious Area"				
"	20.000 Pervious length"				
"	2.000 Pervious slope"				
"	0.198 Impervious Area"				
"	20.000 Impervious length"				
"	2.000 Impervious slope"				
"	0.250 Pervious Manning 'n	1 11			
"	75.000 Pervious Max.infilt	ration"			
	12.500 Pervious Min.infilt	ration"			
	0.250 Pervious Lag consta	nt (hours)"			
	5.000 Pervious Depression	storage"			
	0.015 Impervious Manning	'n'"			
	0.000 Impervious Max.infi	Itration"			
	0.000 Impervious Min.infi	Itration"			
	0.050 Impervious Lag cons	tant (hours))		
	1.500 Impervious Depression	on storage"		<i>,</i>	
	0.335 0.624	4 0.000	- 0.000 0	.m/sec"	
	Catchment 200	Pervious	Impervious	lotal Area	
	Surface Area	0.792	0.198	0.990	nectare"
	Time of Concentration	7.916	1.391	5.838	minutes
	lime to Centrola	88.951 07 025	83.432	07.193	minutes"
	Kaintali depth	97.935 775 65	y/.935	9/.935 060 FC	(()(I) c m"
	Kalntall Volume	//J.05	7 0C0 TA2'AT	707.70 20 205	C.[[]
		4/.138	2.909	50.505	
	кипотт аертп	20.190	94.900	959.620	

"	Runoff volume	402.31	188.03	590.34	c.m"
"	Runoff coefficient	0.519	0.970	0.609	н
"	Maximum flow	0.259	0.087	0.335	c.m/sec"
"	40 HYDROGRAPH Add Runoff	п			
"	4 Add Runoff "				
"	0.335 0.86	53 0 . 000	0.000"		
"	33 CATCHMENT 300"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	300 SITE WETLAND"				
	0.000 % Impervious"				
	0.080 Total Area"				
	25.000 Flow length"				
	2.000 Overland Slope"				
	0.080 Pervious Area"				
	25.000 Pervious length"				
	2.000 Pervious slope"				
	0.000 Impervious Area"				
	25.000 Impervious length				
	2.000 Impervious slope				
	0.250 Pervious Manning r) 			
	12 EQC Dervious Max.Intil	ration"			
	12.500 Pervious Min.Intil	ration			
	5 000 Pervious Lag consta	ant (nours)			
	0.015 Impervious Depression	'n'"			
	0.000 Impervious Max infi	ll ltnation"			
	0.000 Impervious Max.infi	iltration"			
	0.050 Impervious Lag cons	tant (hours)	\ "		
	1 500 Impervious Depressi	ion storage"	/		
	0.025 0.86	53 0.000	0,000	.m/sec"	
	Catchment 300	Pervious	Impervious	Total Area	п
	Surface Area	0.080	0.000	0.080	hectare"
	Time of concentration	9.050	1.590	9.050	minutes"
"	Time to Centroid	90.079	83.653	90.079	minutes"
"	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	78.35	0.00	78.35	c.m"
"	Rainfall losses	47.259	2.758	47.259	mm"
"	Runoff depth	50.676	95.177	50.676	mm"
"	Runoff volume	40.54	0.00	40.54	c.m"
"	Runoff coefficient	0.517	0.000	0.517	"
"	Maximum flow	0.025	0.000	0.025	c.m/sec"
"	40 HYDROGRAPH Add Runoff	"			
"	4 Add Runoff "				
"	0.025 0.88	38 0.000	0.000"		
"	CATCHMENT 400"				
"	1 Triangular SCS"				
	1 Equal length"				
"	2 Horton equation"				

"	400	SITE FRONT"				
"	60.000	% Impervious"				
"	0.050	Total Area"				
"	10.000	Flow length"				
"	2.000	Overland Slope"				
"	0.020	Pervious Area"				
"	10.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.030	Impervious Area"				
"	10.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag const	tant (hours)) "		
"	1.500	Impervious Depression	on storage"			
"		0.018 0.888	8 0.000	0.000	c.m/sec"	ı
"	Ca	tchment 400	Pervious	Impervious	Total A	Area "
"	Su	rface Area	0.020	0.030	0.050	hectare"
"	Ti	me of concentration	5.223	0.918	2.065	minutes"
"	Tir	me to Centroid	86.094	82.955	83.791	minutes"
"	Ra	infall depth	97.935	97.935	97.935	mm"
"	Ra	infall volume	19.59	29.38	48.97	c.m"
"	Ra	infall losses	47.395	5.151	22.049	mm"
"	Rui	noff depth	50.540	92.784	75.886	mm"
"	Rui	noff volume	10.11	27.84	37.94	c.m"
"	Rui	noff coefficient	0.516	0.947	0.775	"
"	Max	ximum flow	0.007	0.013	0.018	c.m/sec"
"	40 HYI	DROGRAPH Add Runoff '	11			
"	4	Add Runoff "				
"		0.018 0.903	1 0.000	0.000"		
"	38 ST/	ART/RE-START TOTALS	400"			
"	3	Runoff Totals on EX	IT"			
"	To	tal Catchment area		4	.570	hectare"
"	To	tal Impervious area		1	.091	hectare"
n	To	tal % impervious		23	.862"	
		-				

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
		Job folder: B:\Working\WRIGHTHAVEN HOMES\"
		2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
C	alcs\2024-08-20	SWM Pond"
		Output filename: 122025 Post 2vr.out"
"		Licensee name: gmbp"
"		Company "
		Date & Time last used: 8/21/2024 at 9:21:58 AM"
	31 TT	ME PARAMETERS"
	5.000	Time Step"
	180.000	Max. Storm length"
	1500.000	Max. Hydrograph"
	32 ST(DRM Chicago storm"
	1	Chicago storm"
	695 050	Coefficient A"
	6 387	Constant B"
	0.307	Exponent ("
	0.755	Exponent C
	180 000	Duration"
	1 000	Time sten multinlier"
	1.000 May	vinum intensity 99.625 mm/hr"
	Tot	tal donth 33.014 mm"
	6	002bvd Hydrograph extension used in this file"
	33 (^-	TCHMENT 1000"
	35 CA 1	Triangulan SCS"
	1	Faul longth"
	1	Equal religin
	1000	
	25 000	* Impopuique"
	23.000	7 Impervious
	150 000	Flow longth"
	120.000	Piow Teligui
	2.000	Dervious Anon"
	2.300	Pervious Area
	120.000	Pervious clopo"
	2.000	Tenenvious Anos"
	150,000	Impervious Area
	120.000	Impervious clope"
	2.000	Impervious Stope
	0.250	Pervious Manning n
	12 500	Pervious Max.Inflicration
	0 2E0	Pervious lag constant (houns)"
	U.200	Ponvious Donnossion stonago"
	5.000 0.015	Terry Lous Depression Storage
	0.000 CID.U	Impervious Max infiltration"
	0.000	Impervious Min.infiltration"
	0.000	Impervious Min.infill("diton
	0.050	Impervious Lag constant (nours)

"	1.500 Impervious Depressio	n storage"			
"	0.180 0.000	0.000	0.000 0	.m/sec"	
"	Catchment 1000	Pervious	Impervious	Total Area	п
"	Surface Area	2.588	0.863	3.450	hectare"
"	Time of concentration	72.493	5.835	11.857	minutes"
"	Time to Centroid	128.681	91.788	95.121	minutes"
"	Rainfall depth	33.014	33.014	33.014	mm"
"	Rainfall volume	854.24	284.75	1138.98	c.m"
"	Rainfall losses	31.976	1.664	24.398	mm"
"	Runoff depth	1.038	31.350	8.616	mm"
"	Runoff volume	26.85	270.39	297.25	c.m"
	Runoff coefficient	0.031	0.950	0.261	п
	Maximum flow	0.007	0.179	0.180	c.m/sec"
	40 HYDROGRAPH Add Runoff "				
	4 Add Runoff "				
	0.180 0.180	0.000	0.000"		
	33 CATCHMENT 2000"	01000	0.000		
	1 Triangular SCS"				
	1 Foual length"				
	2 Horton equation"				
	2000 STTE"				
	80 000 % Impervious"				
	0.690 Total Area"				
	30 000 Flow length"				
	2 000 Overland Slope"				
	0 138 Pervious Area"				
	30 000 Pervious length"				
	2 000 Pervious slope"				
	2.000 Fervious Stope				
	20.000 Imponvious longth"				
	2 000 Impenvious slope"				
	2.000 Impervious Stope	н			
	75 000 Donvious Max infiltr	ation"			
	12 500 Pervious Max.IIIIIII	ation"			
	0.250 Pervious lag constan	t (bounc)"			
	5 000 Pervious Depression	stonage"			
	0.015 Imponyious Manning '	storage			
	0.000 Imponyious Max infil	" thation"			
	0.000 Impervious Max.IIIII	tration"			
	0.000 Impervious Lag const	(hallon			
	1 EQQ Impenvious Depression	ant (nours)			
		a age	0 000 0		
	0.117 0.180				
		Pervious	Impervious	Total Area	haatana"
	Surface Area	0.138	0.552	0.690	nectare
	Time to Controld	21.000	2.222	2.432	minutes
	IIME TO LENTROID	32.//Y	00.449	22 014	minutes"
	Kaintali depth	53.014 45.56	23.014 102 24	23.014 227 00	
	Kaliitali Volume	42.20	1 007	221.00	C.III
	Kaintali losses	31.9/0	1.98/	1.905	
	kunott depth	7.038	31.02/	25.029	mm

"	Ru	noff volume	1.43	171.27	172.70	c.m"
"	Ru	noff coefficient	0.031	0.940	0.758	п
"	Ма	ximum flow	0.001	0.117	0.117	c.m/sec"
"	40 HY	DROGRAPH Add Runof	f "			
"	4	Add Runoff "				
"		0.117 0.	281 0.000	0.000"		
"	33 CA	TCHMENT 2001"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	2001	SITE SWM"				
"	15.000	% Impervious"				
"	0.130	Total Area"				
"	20.000	Flow length"				
"	2.000	Overland Slope"				
"	0.110	Pervious Area"				
"	20.000	Pervious length"				
"	2.000	Pervious slope"				
	0.019	Impervious Area"				
"	20.000	Impervious length	ו"			
	2.000	Impervious slope"				
	0.250	Pervious Manning	'n'"			
	75.000	Pervious Max.infi	ltration"			
	12.500	Pervious Min.infi	ltration"			
	0.250	Pervious Lag cons	stant (hours)"			
	5.000	Pervious Depressi	on storage"			
	0.015	Impervious Mannin	ig 'n'"			
	0.000	Impervious Max.in	filtration"			
	0.000	Impervious Min.in	itiltration"	、		
	0.050	Impervious Lag co	onstant (nours)"		
	1.500	Impervious Depres	sion storage	0,000		
	C -	0.004 0.	281 0.000	0.000 (.m/sec	
	Ca Cu	itchment 2001	Pervious	Impervious	Iotal Area	hootovo"
	Su Ti	ma of concontratio	0.110 n 21 640	0.019	0.130	nectare
	11 T:	me to Contentratio		1./42 OF 61/	4.900	minutes
	I I P a	infall donth	22 014	22 014	22 014	mm"
	Ra	infall volume	36 48	6 11	12 02	
	Ra	infall losses	31 977	1 962	42.92	C • III mm"
	Ru	noff denth	1 037	31 052	5 539	mm"
	Ru	noff volume	1 15	6 96	7 20	с m"
	Ru	noff coefficient	0 031	0 941	0 168	"
	Ma	ximum flow	0.001	0.004	0.004	c.m/sec"
	40 HY	DROGRAPH Add Runof	f "	0.001		
	4	Add Runoff "	•			
		0.004 0.	285 0.000	0.000"		
"	54 PC	ND DESIGN"				
"	0.285	Current peak flow	/ c.m/sec"			
"	0.001	Target outflow	c.m/sec"			
"	477.2	Hydrograph volume	e c.m"			

"	21. N	lumber of stages		
"	0.000 M	linimum water le	vel metre"	
"	3.000 M	laximum water le	vel metre"	
"	0.000 S	tarting water l	evel metre	п
"	0 K	eep Design Data	: 1 = True; 0	= False"
"		Level Discharg	e Volume"	
"	4	15.500 0.00	0.000"	
"	4	15.550 1.01E-0	5 135.600"	
"	4	15.600 0.0050	0 153.400"	
"	4	15.650 0.0070	0 172.200"	
"	4	15.700 0.0080	0 192.200"	
"	4	15.750 0.0090	0 213.200"	
"	4	15.800 0.0100	0 235.500"	
	4	15.850 0.0110	0 258.800"	
	4	15.900 0.0120	0 283.400"	
"	4	15.950 0.0130	0 309.200"	
	4	16.000 0.0140	0 336.300"	
	4	16.050 0.0850	0 364,600"	
	۵	16,100 0,0900	0 394,200"	
	۵	16,150 0.0950	0 425,200"	
	4	16 200 0 0990	0 457 500"	
	۵	16.250 0.180	0 491 100"	
	۵	16,300 0,329	0 526,200"	
	۵	16.350 0.524	0 562.700"	
	4	16 400 0 758	600 700"	
	4	16.450 1.02	8 640,100"	
	4	16 500 1 33	1 681 300"	
	Peak	outflow	0.	033 c.m/sec"
	Maxi	mum level	416	013 metre"
	Maxi	mum storage	343	824 cm"
	Cent	roidal lag	4	368 hours"
	cent	0.004 0.28	5 0.033	0.000 c.m/sec"
	40 HYDR	OGRAPH Next lin	k "	01000 01111/ 500
		lext link "	ĸ	
	5 1	0,004 0	.033 0.03	3 0.000"
	33 CATC	HMENT 2002"		5 0.000
	1 T	riangular SCS"		
	1 F	aual length"		
	2 H	orton equation"		
	2002 5	TTE REAR"		
	0.000 %	Tmpervious"		
	0 080 T	otal Δrea"		
	40 000 F	low length"		
	2 000 1	verland Slone"		
	0,080 P	Pervious Area"		
	40 000 P	ervious length"		
	-0.000 P 2 000 P	ervious slone"		
	0 000 T	mnervious Area"		
	40,000 T	mpervious lengt	h"	
	2 AAA T	mnervious clone		
	2.000 1	mper vicus siope		

"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.000 0.03	3 0.033	0.000	c.m/sec"	
"	Ca	atchment 2002	Pervious	Impervious	Total Area	п
"	Su	urface Area	0.080	0.000	0.080	hectare"
"	Ti	ime of concentration	32.800	2.640	32.800	minutes"
"	Ti	ime to Centroid	99.630	87.071	99.629	minutes"
"	Ra	ainfall depth	33.014	33.014	33.014	mm"
"	Ra	ainfall volume	26.41	0.00	26.41	c.m"
"	Ra	ainfall losses	31.976	2.026	31.976	mm"
"	Ru	unoff depth	1.038	30.988	1.038	mm"
"	Ru	unoff volume	0.83	0.00	0.83	c.m"
"	Ru	unoff coefficient	0.031	0.000	0.031	
"	Ma	aximum flow	0.000	0.000	0.000	c.m/sec"
"	40 HY	/DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.000 0.03	3 0.033	0.000"		
"	33 CA	ATCHMENT 3000"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	3000	SITE WETLAND"				
	0.000	% Impervious"				
	0.130	Total Area"				
	25.000	Flow length"				
	2.000	Overland Slope"				
	0.130	Pervious Area"				
	25.000	Pervious length"				
	2.000	Pervious slope"				
	0.000	Impervious Area				
	25.000	Impervious length				
	2.000	Impervious slope				
	0.250	Pervious Manning n				
	12 500	Pervious Max.Intilt	ration nation"			
	12.500	Pervious Min.Intile	ration nt (bounc)"			
	0.250	Pervious Lag consta	nt (nours)			
	2.000 0.015	Tervious Depression	scorage			
	0 000	Impervious Manning	II 1tpation"			
	0.000	Impervious Max.INTI	ltnation"			
	0.000	Impervious lag cons	tant (hours)	\ "		
	1 500	Impervious Lag COIIS	on stonago"	/		
	T.200	Tuber ATORS Debl.6221	on storage			

"	0.001 0.	033 0.033	0.000	c.m/sec"	
"	Catchment 3000	Pervious	Impervious	Total Area	
"	Surface Area	0.130	0.000	0.130	hectare"
"	Time of concentratio	n 24.740	1.991	24.740	minutes"
"	Time to Centroid	93.722	86.074	93.722	minutes"
"	Rainfall depth	33.014	33.014	33.014	mm"
"	Rainfall volume	42.92	0.00	42.92	c.m"
"	Rainfall losses	31.977	1.935	31.977	mm"
"	Runoff depth	1.037	31.079	1.037	mm"
"	Runoff volume	1.35	0.00	1.35	c.m"
"	Runoff coefficient	0.031	0.000	0.031	
"	Maximum flow	0.001	0.000	0.001	c.m/sec"
"	40 HYDROGRAPH Add Runof	f "			
"	4 Add Runoff "				
"	0.001 0.	033 0.033	0.000"		
"	33 CATCHMENT 4000"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	4000 SITE REMAIN"				
"	60.000 % Impervious"				
"	0.050 Total Area"				
"	10.000 Flow length"				
"	2.000 Overland Slope"				
"	0.020 Pervious Area"				
"	10.000 Pervious length"				
"	2.000 Pervious slope"				
"	0.030 Impervious Area"				
"	10.000 Impervious length				
"	2.000 Impervious slope"				
"	0.250 Pervious Manning	'n'"			
"	75.000 Pervious Max.infi	ltration"			
"	12.500 Pervious Min.infi	ltration"			
"	0.250 Pervious Lag cons	tant (hours)"	I		
"	5.000 Pervious Depressi	on storage"			
"	0.015 Impervious Mannin	g 'n'"			
"	0.000 Impervious Max.in	filtration"			
"	0.000 Impervious Min.in	filtration"			
"	0.050 Impervious Lag co	nstant (hours	;)"		
"	1.500 Impervious Depres	sion storage"	1		
"	0.007 0.	033 0.033	0.000	c.m/sec"	
"	Catchment 4000	Pervious	Impervious	Total Area	п
"	Surface Area	0.020	0.030	0.050	hectare"
"	Time of concentratio	n 14.277	1.149	1.439	minutes"
"	Time to Centroid	86.060	84.800	84.828	minutes"
"	Rainfall depth	33.014	33.014	33.014	mm"
"	Rainfall volume	6.60	9.90	16.51	c.m"
"	Rainfall losses	31.976	2.325	14.185	mm"
"	Runoff depth	1.038	30.689	18.829	mm"
"	Runoff volume	0.21	9.21	9.41	c.m"

"	Ru	noff coefficient	0.031	0.930	0.570	н
"	Ma	aximum flow	0.000	0.007	0.007	c.m/sec"
"	40 HY	DROGRAPH Add Runoff	"			
"	4	Add Runoff "				
"		0.007 0.03	3 0.033	0.000"		
"	33 CA	ATCHMENT 4001"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	4001	SITE SINGLE"				
"	30.000	% Impervious"				
"	0.030	Total Area"				
"	10.000	Flow length"				
"	2.000	Overland Slope"				
"	0.021	Pervious Area"				
"	10.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.009	Impervious Area"				
"	10.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.002 0.03	3 0.033	0.000 (c.m/sec"	
"	Ca	atchment 4001	Pervious	Impervious	Total Area	п
"	Su	irface Area	0.021	0.009	0.030	hectare"
"	Ti	me of concentration	14.277	1.149	2.110	minutes"
"	Ti	lme to Centroid	86.060	84.800	84.892	minutes"
"	Ra	ainfall depth	33.014	33.014	33.014	mm"
"	Ra	ainfall volume	6.93	2.97	9.90	c.m"
"	Ra	ainfall losses	31.976	2.325	23.081	mm"
"	Ru	noff depth	1.038	30.689	9.933	mm"
"	Ru	inoff volume	0.22	2.76	2.98	c.m"
"	Ru	noff coefficient	0.031	0.930	0.301	"
"	Ma	aximum flow	0.000	0.002	0.002	c.m/sec"
"	40 HY	DROGRAPH Add Runoff	"			
	4	Add Runoff "				
"		0.002 0.03	4 0.033	0.000"		
	33 CA	ATCHMENT 4002"				
	1	Triangular SCS"				
	1	Equal length"				
	2	Horton equation"				
	4002	SIIE ENTRANCE"				

"	90.000	% Impervious"				
"	0.010	Total Area"				
"	5.000	Flow length"				
"	2.000	Overland Slope"				
"	0.001	Pervious Area"				
"	5.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.009	Impervious Area"				
"	5.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.002 0.03	4 0.033	0.000	c.m/sec'	1
"	Ca	tchment 4002	Pervious	Impervious	Total A	Area "
"	Su	rface Area	0.001	0.009	0.010	hectare"
"	Ti	me of concentration	9.419	0.758	0.791	minutes"
"	Ti	me to Centroid	82.317	84.479	84.471	minutes"
"	Ra	infall depth	33.014	33.014	33.014	mm"
	Ra	infall volume	0.33	2.97	3.30	c.m"
	Ra	infall losses	31.986	3.083	5.974	mm"
	Ru	noff depth	1.028	29.931	27.040	mm"
	Ru	noff volume	0.01	2.69	2.70	c.m"
	Ru	noff coefficient	0.031	0.907	0.819	" / "
	Ма	ximum flow	0.000	0.002	0.002	c.m/sec"
	40 HY	DROGRAPH Add Runoff				
	4	Add Runott "				
		0.002 0.03	4 0.033	0.000"		
	38 ST	ARI/RE-START TOTALS	4002"			
	3	Runott lotals on EX	11			
	To -	tal Catchment area		4	.5/0	nectare"
		tal Impervious area		1	.482	nectare"
	10	ται % impervious TT"		32	.429"	
	1A FX	1 I				

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: B:\Working\WRIGHTHAVEN HOMES\"
"		2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
Ca	lcs\2024-08-20	SWM Pond"
"		Output filename: 122025 Post 5yr.out"
"		Licensee name: gmbp"
"		Company "
"		Date & Time last used: 8/21/2024 at 9:47:39 AM"
"	31 TIN	ME PARAMETERS"
"	5.000	Time Step"
"	180.000	Max. Storm length"
"	1500.000	Max. Hydrograph"
"	32 ST(ORM Chicago storm"
"	1	Chicago storm"
"	1459.072	Coefficient A"
"	13.690	Constant B"
"	0.850	Exponent C"
"	0.375	Fraction R"
"	180.000	Duration"
"	1.000	Time step multiplier"
"	Max	ximum intensity 119.775 mm/hr"
"	Tot	tal depth 49.792 mm"
"	6	005hyd Hydrograph extension used in this file"
	33 CA ⁻	TCHMENT 1000"
	1	Triangular SCS"
	1	Equal length"
	2	Horton equation"
	1000	EXTERNAL"
	25.000	% Impervious"
	3.450	lotal Area"
	150.000	Flow length"
	2.000	Overland Slope"
	2.588	Pervious Area
	150.000	Pervious length"
	2.000	
	0.863	Impervious Area
	120.000	Impervious length
	2.000	Impervious slope
	0.250	Pervious Manning n Denvious May infiltration"
	12 500	Pervious Max.Inflicration
	0 250	Pervious lag constant (houns)"
	5 000	Pervious Depression storage"
	0 015	Tmnervious Manning 'n'"
	0.015	Impervious Max infiltration"
п	0.000	Impervious Min.infiltration"
"	0.050	Impervious Lag constant (hours)"
	0.000	

"	' 1.500 Impervious Depression stor	'age"
"	0.252 0.000	0.000 0.000 c.m/sec"
"	' Catchment 1000 Pervio	ous Impervious Total Area "
"	Surface Area 2.588	0.863 3.450 hectare"
"	' Time of concentration 42.120) 5.421 20.225 minutes"
"	' Time to Centroid 115.20	06 89.951 100.139 minutes"
"	' Rainfall depth 49.792	2 49.792 49.792 mm"
"	' Rainfall volume 1288.	6 429.45 1717.81 c.m"
"	' Rainfall losses 38.982	2 1.829 29.694 mm"
"	' Runoff depth 10.816) 47.963 20.098 mm"
"	Runoff volume 279.76) 413.68 693.38 c.m"
	Runoff coefficient 0.217	0.963 0.404 "
	Maximum flow 0.093	0.238 0.252 c.m/sec"
	40 HYDROGRAPH Add Runoff "	
	4 Add Runoff "	
	0.252 0.252 0	0.000 0.000"
	CATCHMENT 2000"	
	1 Iriangular SCS"	
	1 Equal length"	
	2 Horton equation"	
	2000 SIIE	
	\sim	
	30.090 Flow length"	
	' 2 000 Ovenland Slope"	
	\sim 0.138 Pervious Area"	
	' 30 000 Pervious length"	
	2 000 Pervious slope"	
	' 0.552 Impervious Area"	
	' 30.000 Impervious length"	
"	2.000 Impervious slope"	
"	0.250 Pervious Manning 'n'"	
"	' 75.000 Pervious Max.infiltration'	1
"	' 12.500 Pervious Min.infiltration'	ı
"	' 0.250 Pervious Lag constant (hou	ırs)"
"	5.000 Pervious Depression storage	ge"
"	' 0.015 Impervious Manning 'n'"	
"	' 0.000 Impervious Max.infiltratio	n"
"	' 0.000 Impervious Min.infiltratio	on"
"	' 0.050 Impervious Lag constant (H	iours)"
"	' 1.500 Impervious Depression stor	'age"
"	0.151 0.252 0	0.000 0.000 c.m/sec"
"	Catchment 2000 Pervio	ous Impervious Total Area "
	Surface Area 0.138	0.552 0.690 hectare"
	Time of concentration 16.03	2.064 2.813 minutes"
	Ime to Centroid 91.266 Data Call 10 20	85.228 85.552 minutes"
	Kaintall depth 49.792	49./92 49./92 mm"
	Kaintall Volume 68./1	2/4.85 343.56 C.M"
	Kaliitali 105585 39.02	
	KUNOTT depth 10.768	, 47.536 40.182 MM

"	Runoff volume	14.86	262.40	277.26	c.m"
"	Runoff coefficient	0.216	0.955	0.807	"
"	Maximum flow	0.010	0.150	0.151	c.m/sec"
"	40 HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
"	0.151 0.3	92 0.000	0.000"		
"	33 CATCHMENT 2001"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	2001 SITE SWM"				
	15.000 % Impervious"				
	0.130 Total Area"				
	20.000 Flow length"				
	2.000 Overland Slope"				
	0.110 Pervious Area"				
	20.000 Pervious length"				
	2.000 Pervious slope"				
	0.019 Impervious Area"				
	20.000 Impervious length"				
	2.000 Impervious slope"				
	0.250 Pervious Manning	n tootion"			
	12 FOO Dervious Max.Intil	tration			
	12.500 PERVIOUS MIN.INTII	uration			
	5 000 Pervious Lag Const	ant (nours)			
	0.015 Imponyious Manning	'n'"			
	0.015 Impervious Maining	iltration"			
	0.000 Impervious Min inf	iltration"			
	0.000 Impervious Lag con	stant (hours	\ "		
	1.500 Impervious Depress	ion storage"	/		
	0.011 0.3	92 0.000	0.000	.m/sec"	
	Catchment 2001	Pervious	Impervious	Total Area	п
	Surface Area	0.110	0.019	0.130	hectare"
"	Time of concentration	12.573	1.618	7.769	minutes"
"	Time to Centroid	88.069	84.552	86.526	minutes"
"	Rainfall depth	49.792	49.792	49.792	mm"
"	Rainfall volume	55.02	9.71	64.73	c.m"
"	Rainfall losses	39.035	2.185	33.507	mm"
"	Runoff depth	10.757	47.607	16.284	mm"
"	Runoff volume	11.89	9.28	21.17	c.m"
"	Runoff coefficient	0.216	0.956	0.327	п
"	Maximum flow	0.009	0.006	0.011	c.m/sec"
"	40 HYDROGRAPH Add Runoff				
"	4 Add Runoff "				
	0.011 0.4	01 0.000	0.000"		
	54 POND DESIGN"				
	0.401 Current peak flow	c.m/sec"			
	0.001 larget out+low	c.m/sec"			
	991.8 Hydrograph volume	c.m"			

"	' 21. Nu	imber of stages"		
"	' 0.000 Mi	nimum water lev.	el metre"	
"	' 3.000 Ma	ximum water lev	el metre"	
"	' 0.000 St	arting water le	vel metre"	
"	' 0 Ke	ep Design Data:	1 = True; 0 =	False"
"	I	Level Discharge	Volume"	
"	' 41	.5.500 0.000	0.000"	
"	' 41	5.550 1.01E-05	135.600"	
"	' 41	5.600 0.00500	153.400"	
"	' 41	5.650 0.00700	172.200"	
"	' 41	5.700 0.00800	192.200"	
"	' 41	5.750 0.00900	213.200"	
"	' 41	5.800 0.01000	235.500"	
"	' 41	5.850 0.01100	258.800"	
"	' 41	5.900 0.01200	283.400"	
"	' 41	5.950 0.01300	309.200"	
"	' 41	6.000 0.01400	336.300"	
"	' 41	6.050 0.08500	364.600"	
"	' 41	6.100 0.09000	394.200"	
"	' 41	6.150 0.09500	425.200"	
"	' 41	6.200 0.09900	457.500"	
"	' 41	6.250 0.1800	491.100"	
"	' 41	6.300 0.3290	526.200"	
"	' 41	6.350 0.5240	562.700"	
"	' 41	6.400 0.7580	600.700"	
"	' 41	6.450 1.028	640.100"	
"	' 41	6.500 1.331	681.300"	
"	' Peak	outflow	0.159	c.m/sec"
"	' Maxim	um level	416.238	8 metre"
"	' Maxim	um storage	483.003	3 c.m"
"	' Centr	oidal lag	3.003	8 hours"
"	ı	0.011 0.401	0.159	0.000 c.m/sec"
"	' 40 HYDRC	GRAPH Next link	н	
"	' 5 Ne	xt link "		
"	1	0.011 0.1	0.159	0.000"
"	' 33 CATCH	IMENT 2002"		
"	' 1 Tr	iangular SCS"		
"	' 1 Ec	ual length"		
"	' 2 Ho	orton equation"		
"	' 2002 SI	TE REAR"		
"	0.000 %	Impervious"		
"	' 0.080 To	tal Area"		
"	' 40.000 Fl	ow length"		
"	' 2.000 Ov	verland Slope"		
"	' 0.080 Pe	rvious Area"		
"	' 40.000 Pe	rvious length"		
"	' 2.000 Pe	rvious slope"		
"	' 0.000 Im	pervious Area"		
"	' 40.000 Im	pervious length	n	
"	' 2.000 In	pervious slope"		

"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			
"		0.005 0.15	9 0.159	0.000 (c.m/sec"	
"	Ca	atchment 2002	Pervious	Impervious	Total Area	
"	Su	urface Area	0.080	0.000	0.080	hectare"
"	Ti	lme of concentration	19.058	2.453	19.058	minutes"
"	Ti	lme to Centroid	94.013	85.795	94.013	minutes"
"	Ra	ainfall depth	49.792	49.792	49.792	mm"
"	Ra	ainfall volume	39.83	0.00	39.83	c.m"
"	Ra	ainfall losses	39.007	2.406	39.007	mm"
	Ru	unoff depth	10.785	47.386	10.785	mm"
	Ru	unoff volume	8.63	0.00	8.63	c.m"
	Ru	unoff coefficient	0.217	0.000	0.217	
	Ma	aximum flow	0.005	0.000	0.005	c.m/sec"
	40 Hi	DROGRAPH Add Runott				
	4	Add Runott "	0 450			
	22 64	0.005 0.16	2 0.159	0.000"		
	33 CA	AICHMENI 3000				
	1	Faull longth"				
	1	Equal tengen Honton equation"				
	2000					
	0 000	% Impenvious"				
	0.000	Total Area"				
	25 000	Flow length"				
	23.000	Overland Slope"				
	0 130	Pervious Area"				
	25,000	Pervious length"				
	2,000	Pervious slope"				
	0.000	Impervious Area"				
	25.000	Impervious length"				
	2.000	Impervious slope"				
	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'" Ŭ			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depressi	on storage"			

"	0.010 0.16	0.159	0.000 (c.m/sec"	
"	Catchment 3000	Pervious	Impervious	Total Area	н
"	Surface Area	0.130	0.000	0.130	hectare"
"	Time of concentration	14.375	1.850	14.375	minutes"
"	Time to Centroid	89.770	84.851	89.770	minutes"
"	Rainfall depth	49.792	49.792	49.792	mm"
"	Rainfall volume	64.73	0.00	64.73	c.m"
"	Rainfall losses	38.999	2.189	38.999	mm"
"	Runoff depth	10.793	47.602	10.793	mm"
"	Runoff volume	14.03	0.00	14.03	c.m"
"	Runoff coefficient	0.217	0.000	0.217	"
"	Maximum flow	0.010	0.000	0.010	c.m/sec"
	40 HYDROGRAPH Add Runoff	n			
	4 Add Runoff "				
	0.010 0.16	65 0.159	0.000"		
	33 CATCHMENT 4000"				
	1 Triangular SCS"				
	1 Equal length"				
	2 Horton equation"				
	4000 SITE REMAIN"				
	60.000 % Impervious				
	10.000 Flow longth"				
	2 000 Ovenland Slepe"				
	2.000 Overtand Stope				
	10.020 Pervious Area				
	2 000 Pervious slope"				
	0 030 Impervious Area"				
	10 000 Impervious length"				
"	2.000 Impervious slope"				
"	0.250 Pervious Manning 'n				
"	75.000 Pervious Max.infilt	ration"			
"	12.500 Pervious Min.infilt	ration"			
"	0.250 Pervious Lag consta	nt (hours)"			
"	5.000 Pervious Depression	storage"			
"	0.015 Impervious Manning	'n'"			
"	0.000 Impervious Max.infi	ltration"			
"	0.000 Impervious Min.infi	ltration"			
"	0.050 Impervious Lag cons	tant (hours))"		
"	1.500 Impervious Depressi	on storage"			
"	0.009 0.16	0.159	0.000 (c.m/sec"	
"	Catchment 4000	Pervious	Impervious	Total Area	"
"	Surface Area	0.020	0.030	0.050	hectare"
"	Time of concentration	8.295	1.068	2.029	minutes"
"	Time to Centroid	84.311	83.761	83.834	minutes"
	Rainfall depth	49.792	49.792	49.792	mm"
	Rainfall volume	9.96	14.94	24.90	c.m"
	Rainfall losses	38.990	2.855	17.309	mm"
	Runott depth	10.802	46.936	32.483	mm"
	Runott volume	2.16	14.08	16.24	c.m"

"	Ru	noff coefficient	0.217	0.943	0.652	п
"	Ма	ximum flow	0.002	0.009	0.009	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.009 0.1	.67 0.159	0.000"		
"	33 CA	TCHMENT 4001"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	4001	SITE SINGLE"				
"	30.000	% Impervious"				
"	0.030	Total Area"				
"	10.000	Flow length"				
"	2.000	Overland Slope"				
"	0.021	Pervious Area"				
"	10.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.009	Impervious Area"				
"	10.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious Max.infil	tration"			
"	12.500	Pervious Min.infil	tration"			
"	0.250	Pervious Lag const	ant (hours)"			
"	5.000	Pervious Depressio	on storage"			
"	0.015	Impervious Manning	; 'n'"			
"	0.000	Impervious Max.inf	iltration"			
"	0.000	Impervious Min.inf	iltration"			
"	0.050	Impervious Lag con	stant (hours)"		
"	1.500	Impervious Depress	ion storage"			
"		0.004 0.1	.67 0.159	0.000	c.m/sec"	
"	Ca	tchment 4001	Pervious	Impervious	Total Area	"
"	Su	irface Area	0.021	0.009	0.030	hectare"
"	Ti	me of concentration	8.295	1.068	3.593	minutes"
"	Ti	me to Centroid	84.311	83.761	83.953	minutes"
"	Ra	infall depth	49.792	49.792	49.792	mm"
"	Ra	infall volume	10.46	4.48	14.94	c.m"
"	Ra	infall losses	38.990	2.855	28.149	mm"
"	Ru	noff depth	10.802	46.936	21.642	mm"
"	Ru	noff volume	2.27	4.22	6.49	c.m"
"	Ru	noff coefficient	0.217	0.943	0.435	"
"	Ma	ximum flow	0.002	0.003	0.004	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
		0.004 0.1	.67 0.159	0.000"		
	33 CA	TCHMENT 4002"				
	1	Triangular SCS"				
	1	Equal length"				
	2	Horton equation"				
	4002	SIIE ENTRANCE"				

"	90.000	% Impervious"				
"	0.010	Total Area"				
"	5.000	Flow length"				
"	2.000	Overland Slope"				
"	0.001	Pervious Area"				
"	5.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.009	Impervious Area"				
"	5.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n				
"	75.000	Pervious Max.infilt	ration"			
"	12.500	Pervious Min.infilt	ration"			
"	0.250	Pervious Lag consta	nt (hours)"			
"	5.000	Pervious Depression	storage"			
"	0.015	Impervious Manning	'n'"			
"	0.000	Impervious Max.infi	ltration"			
"	0.000	Impervious Min.infi	ltration"			
"	0.050	Impervious Lag cons	tant (hours))"		
"	1.500	Impervious Depression	on storage"			
"		0.003 0.16	7 0.159	0.000	c.m/sec'	1
"	Ca	tchment 4002	Pervious	Impervious	Total A	Area "
"	Su	rface Area	0.001	0.009	0.010	hectare"
"	Ti	me of concentration	5.473	0.704	0.826	minutes"
"	Ti	me to Centroid	81.634	83.719	83.666	minutes"
"	Ra	infall depth	49.792	49.792	49.792	mm"
	Ra	infall volume	0.50	4.48	4.98	c.m"
"	Ra	infall losses	39.045	4.334	7.805	mm"
	Ru	noff depth	10.747	45.457	41.986	mm"
	Ru	noff volume	0.11	4.09	4.20	c.m"
	Ru	noff coefficient	0.216	0.913	0.843	
	Ма	ximum flow	0.000	0.003	0.003	c.m/sec"
	40 HY	DROGRAPH Add Runoff				
	4	Add Runoff "				
		0.003 0.16	8 0.159	0.000"		
	38 ST.	ARI/RE-START TOTALS	4002"			
	3	Runott Totals on EX	IT"	_		
	To	tal Catchment area		4	.5/0	nectare"
	To	tal Impervious area		1	.482	nectare"
	TO	ται % impervious		32	.429"	
	19 FX	11				

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: B:\Working\WRIGHTHAVEN HOMES\"
		2401073 - 122025 079 Sideroad 19 Fergus\5 Work in Progress\Design
Ca	alcs\2024-08-20	SWM Pond"
п		Output filename: 122025 Post 100vr.out"
		Licensee name: gmbp"
"		Company "
"		Date & Time last used: 8/20/2024 at 4:13:00 PM"
	31 TT	ME PARAMETERS"
	5.000	Time Step"
	180.000	Max. Storm length"
	1500.000	Max. Hydrograph"
	32 ST	ORM Chicago storm"
	1	Chicago storm"
	6933 019	Coefficient A"
	34 669	Constant B"
	0 998	Exponent ("
	0.558	Exponence C Enaction R"
	180 000	Dupation"
	1 000	Time stop multiplion"
	1.000 Ma	111111111111111111111111111111111111
	Ма	$\frac{1}{4.792} \frac{1}{100} $
	10	100bud Uudnagnanb avtancian usad in this file"
		TOUMENT 1000"
	55 CA	Triangulan SCC"
	1	Triangular SCS
	1	Equal length
	2 1000	HORLON EQUALION
	7000 1000	
	25.000	% Impervious
	3.450	Iotal Area"
	150.000	Flow length"
	2.000	Overland Slope"
	2.588	Pervious Area
	150.000	Pervious length"
	2.000	Pervious slope"
	0.863	Impervious Area"
	150.000	Impervious length"
	2.000	Impervious slope"
	0.250	Pervious Manning 'n'"
	75.000	Pervious Max.infiltration"
	12.500	Pervious Min.infiltration"
	0.250	Pervious Lag constant (hours)"
	5.000	Pervious Depression storage"
	0.015	Impervious Manning 'n'"
	0.000	Impervious Max.infiltration"
"	0.000	Impervious Min.infiltration"
"	0.050	Impervious Lag constant (hours)"

"	1.500 Impervious Depression	on storage"			
"	0.624 0.000	0.000	0.000 0	.m/sec"	
"	Catchment 1000	Pervious	Impervious	Total Area	п
"	Surface Area	2.588	0.863	3.450	hectare"
"	Time of concentration	26.519	4.660	18.100	minutes"
"	Time to Centroid	108.723	87.693	100.623	minutes"
"	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	2534.07	844.69	3378.76	c.m"
"	Rainfall losses	47.001	2.217	35.805	mm"
"	Runoff depth	50.934	95.718	62.130	mm"
"	Runoff volume	1317.91	825.57	2143.47	c.m"
"	Runoff coefficient	0.520	0.977	0.634	п
"	Maximum flow	0.468	0.372	0.624	c.m/sec"
"	40 HYDROGRAPH Add Runoff '				
"	4 Add Runoff "				
"	0.624 0.624	1 0.000	0.000"		
"	33 CATCHMENT 2000"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	2 Horton equation"				
"	2000 SITE"				
"	80.000 % Impervious"				
"	0.690 Total Area"				
"	30.000 Flow length"				
"	2.000 Overland Slope"				
"	0.138 Pervious Area"				
"	30.000 Pervious length"				
"	2.000 Pervious slope"				
"	0.552 Impervious Area"				
"	30.000 Impervious length"				
"	2.000 Impervious slope"				
"	0.250 Pervious Manning 'n'				
"	75.000 Pervious Max.infiltr	ration"			
	12.500 Pervious Min.infiltr	ration"			
	0.250 Pervious Lag constar	nt (hours)"			
	5.000 Pervious Depression	storage"			
	0.015 Impervious Manning	'n'"			
	0.000 Impervious Max.intil	ltration"			
	0.000 Impervious Min.inti	ltration"			
	0.050 Impervious Lag const	tant (hours))		
	1.500 Impervious Depressio	on storage		/ H	
	0.256 0.624	+ <u>0.000</u>	- 0.000 0	.m/sec"	
	Catchment 2000	Pervious	Impervious	lotal Area	
	Surface Area	0.138	0.552	0.690	nectare"
	lime of concentration	TO'07 212	1.//4	2./52	minutes"
	lime to centrola	91.213	07.025	04./10	millinutes"
	Kaintali depth	3/.935 135 15	9/.935 E40.60	9/.935 675 75	(()(I) c m"
	Kaintali Volume	132.12	540.00	0/J./J 11 600	C.[[]
	Kaintali losses	4/.209	2./93	TT'099	
	κυπόττ αέρτη	20,000	93.142	ō0.24/	

"	Runof	f volume	69.92	525.18	595.10	c.m"
"	Runof	f coefficient	0.517	0.971	0.881	
"	Maxim	um flow	0.041	0.239	0.256	c.m/sec"
" 4	10 HYDRO	GRAPH Add Runoff "				
"	4 Ad	d Runoff "				
"		0.256 0.777	0.000	0.000"		
" 3	33 CATCH	MENT 2001"				
"	1 Tr	iangular SCS"				
"	1 Eq	ual length"				
"	2 Ho	rton equation"				
"	2001 SI	TE SWM"				
"	15.000 %	Impervious"				
"	0.130 To	otal Area"				
"	20.000 Fl	ow length"				
"	2.000 Ov	erland Slope"				
"	0.110 Pe	rvious Area"				
"	20.000 Pe	rvious length"				
"	2.000 Pe	rvious slope"				
"	0.019 Im	pervious Area"				
	20.000 Im	pervious length"				
	2.000 Im	pervious slope"				
"	0.250 Pe	rvious Manning 'n'	"			
"	75.000 Pe	rvious Max.infiltr	ation"			
"	12.500 Pe	rvious Min.infiltr	ation"			
	0.250 Pe	rvious Lag constan	it (hours)"			
	5.000 Pe	rvious Depression	storage"			
	0.015 Im	pervious Manning '	n'"			
	0.000 Im	pervious Max.infil	tration"			
	0.000 Im	pervious Min.infil	tration"			
	0.050 Im	pervious Lag const	ant (hours)) "		
	1.500 Im	pervious Depressio	on storage"		<i>,</i>	
		0.044 0.777	0.000	0.000 0	.m/sec"	
	Catch	ment 2001	Pervious	Impervious	Total Area	
	Surta	ice Area	0.110	0.019	0.130	hectare"
	lime	of concentration	7.916	1.391	6.297	minutes"
	lime	to Centrola	88.951	83.432	87.582	minutes
	Raint	all depth	97.935	97.935	97.935	mm ^a
	Raint	all volume	108.22	19.10	127.32	C.m.
	Raint	all losses	47.138	2.969	40.513	mm
	RUNOT	t depth	50.797	94.966	57.422	
	RUNOT	T VOLUME	0.13	10.52	74.05	C.m
	KUNOT	T COETTICIENC	0.519	0.970	0.500	c
		IUIII I I UW ICRADU Add Bunaff "	0.020	0.009	0.044	C.III/Sec
		d Runoff "				
	4 AU	α ιτα παιτοί τ Ο ΟΛΛ Ο Ο Ο Ο Ο Ο Ο Ο Ο	0 000	0 000"		
		0.044 0.021 DESTGN"	0.000	0.000		
		pront neak flow				
			1 111/ 2			
"	0.021 Cu 0.001 Ta	rget outflow c	m/sec"			

"	21.	Number of stages"		
"	0.000	Minimum water lev	el metre"	
"	3.000	Maximum water lev	el metre"	
"	0.000	Starting water le	vel metre"	
"	0	Keep Design Data:	1 = True; 0 =	False"
"		Level Discharge	Volume"	
"		415.500 0.000	0.000"	
"		415.550 1.01E-05	135.600"	
"		415.600 0.00500	153.400"	
"		415.650 0.00700	172.200"	
"		415.700 0.00800	192.200"	
"		415.750 0.00900	213.200"	
"		415.800 0.01000	235.500"	
"		415.850 0.01100	258.800"	
"		415.900 0.01200	283.400"	
"		415.950 0.01300	309.200"	
		416.000 0.01400	336.300"	
		416.050 0.08500	364.600"	
		416.100 0.09000	394.200"	
		416.150 0.09500	425,200"	
		416.200 0.09900	457.500"	
		416.250 0.1800	491,100"	
		416.300 0.3290	526.200"	
		416.350 0.5240	562.700"	
		416.400 0.7580	600.700"	
		416.450 1.028	640,100"	
		416.500 1.331	681.300"	
	Pea	k outflow	. 001.500 0.79	7 c.m/sec"
	Max	imum level	416,40	7 metre"
	Мах	imum storage	606.39	9 c.m"
	Cen	troidal lag	2.18	9 hours"
	cen	0.044 0.821	0.797	0.000 c.m/sec"
	40 HYD	ROGRAPH Next link		
	5	Next link "		
	5	0.044 0.	797 0.797	0.000"
	33 CAT	CHMENT 2002"		01000
	1	Triangular SCS"		
	1	Foual length"		
	2	Horton equation"		
	2002	STTE REAR"		
	0,000	% Impervious"		
	0.000	Total Area"		
	49 999	Flow length"		
	-0.000 2 AAA	Overland Slone"		
	2.000 A ARA	Pervious Area"		
	10.000	Parvious langth"		
	-0.000 2 AAA	Pervious clone"		
	2.000 A AAA	Tmnervious Area"		
	10.000 10 000	Impervious length	u	
	-0.000 2 AAA	Impervious rengen		
	2.000	Tuber ATONS STORE		

... 0.250 Pervious Manning 'n'" ... Pervious Max.infiltration" 75.000 н 12.500 Pervious Min.infiltration" ... Pervious Lag constant (hours)" 0.250 н 5.000 Pervious Depression storage" ... 0.015 Impervious Manning 'n'" ... 0.000 Impervious Max.infiltration" ... Impervious Min.infiltration" 0.000 ... Impervious Lag constant (hours)" 0.050 ... 1.500 Impervious Depression storage" ... 0.022 0.797 0.000 c.m/sec" 0.797 ... н Catchment 2002 Pervious Impervious Total Area ... Surface Area 0.080 0.000 0.080 hectare" Time of concentration 11.999 2.109 11.999 minutes" . Time to Centroid 93.262 84.338 93.262 minutes" ... 97.935 mm" Rainfall depth 97.935 97.935 ... c.m" Rainfall volume 78.35 0.00 78.35 ... Rainfall losses mm" 3.112 47.135 47.135 ... 50.800 50.800 mm" Runoff depth 94.823 Runoff volume 40.64 0.00 40.64 c.m" ... н Runoff coefficient 0.000 0.519 0.519 ... Maximum flow 0.022 0.000 0.022 c.m/sec" ... HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.000" 0.797 0.022 0.818 н 33 CATCHMENT 3000" ... 1 Triangular SCS" ... 1 Equal length" ... 2 Horton equation" ... 3000 SITE WETLAND" ... 0.000 % Impervious" ... 0.130 Total Area" ... Flow length" 25.000 ... 2.000 Overland Slope" ... 0.130 Pervious Area" ... 25.000 Pervious length" ... 2.000 Pervious slope" ... 0.000 Impervious Area" ... 25.000 Impervious length" ... 2.000 Impervious slope" ... 0.250 Pervious Manning 'n'" ... 75.000 Pervious Max.infiltration" ... 12.500 Pervious Min.infiltration" ... 0.250 Pervious Lag constant (hours)" ... 5.000 Pervious Depression storage" ... 0.015 Impervious Manning 'n'" ... 0.000 Impervious Max.infiltration" ... 0.000 Impervious Min.infiltration" ... 0.050 Impervious Lag constant (hours)" ... 1.500 Impervious Depression storage"

"	0.040 0.8	18 0.797	0.000	c.m/sec"	
"	Catchment 3000	Pervious	Impervious	Total Area	п
"	Surface Area	0.130	0.000	0.130	hectare"
"	Time of concentration	9.050	1.590	9.050	minutes"
"	Time to Centroid	90.079	83.653	90.079	minutes"
"	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	127.32	0.00	127.32	c.m"
"	Rainfall losses	47.259	2.758	47.259	mm"
	Runoff depth	50.676	95.177	50.676	mm"
	Runoff volume	65.88	0.00	65.88	c.m"
	Runoff coefficient	0.517	0.000	0.517	"
	Maximum flow	0.040	0.000	0.040	c.m/sec"
	40 HYDROGRAPH Add Runoff	"			,
	4 Add Runoff "				
	0.040 0.8	51 0.797	0.000"		
	33 CATCHMENT 4000"	51 0.757	0.000		
	1 Triangular SCS"				
	1 Faual length"				
	2 Horton equation"				
	A000 STTE REMATN"				
	60 000 % Impervious"				
	0 050 Total Area"				
	10 000 Flow length"				
	2 000 Overland Slope"				
	2.000 Over faile Stope				
	10.000 Pervious longth"				
	2 000 Pervious slength				
	2.000 Pervious Stope				
	10.000 Impervious Area				
	2 000 Impervious length				
	2.000 Impervious Stope	<u>ر ا</u>			
	0.250 Pervious Manning	[] ± ====================================			
	75.000 Pervious Max.Intil	tration			
	12.500 Pervious Min.intil	tration			
	0.250 Pervious Lag const	ant (nours)			
	5.000 Pervious Depressio	n storage			
	0.015 Impervious Manning	n :1			
	0.000 Impervious Max.inf	iltration"			
	0.000 Impervious Min.inf	iltration"	N II		
	0.050 Impervious Lag con	stant (hours)		
	1.500 Impervious Depress	ion storage"		<i>,</i> "	
	0.018 0.8	51 0.797	0.000	c.m/sec"	
	Catchment 4000	Pervious	Impervious	Total Area	
	Surface Area	0.020	0.030	0.050	hectare"
	Time of concentration	5.223	0.918	2.065	minutes"
"	Time to Centroid	86.094	82.955	83.791	minutes"
	Rainfall depth	97.935	97.935	97.935	mm"
"	Rainfall volume	19.59	29.38	48.97	c.m"
"	Rainfall losses	47.395	5.151	22.049	mm"
"	Runoff depth	50.540	92.784	75.886	mm"
"	Runoff volume	10.11	27.84	37.94	c.m"

"	Ru	noff coefficient	0.516	0.947	0.775	п
"	Ма	ximum flow	0.007	0.013	0.018	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.018 0.8	861 0.797	0.000"		
"	33 CA	TCHMENT 4001"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	2	Horton equation"				
"	4001	SITE SINGLE"				
"	30.000	% Impervious"				
"	0.030	Total Area"				
"	10.000	Flow length"				
"	2.000	Overland Slope"				
"	0.021	Pervious Area"				
"	10.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.009	Impervious Area"				
"	10.000	Impervious length"	I Contraction of the second seco			
"	2.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious Max.infil	tration"			
"	12.500	Pervious Min.infil	tration"			
"	0.250	Pervious Lag const	ant (hours)"			
"	5.000	Pervious Depressio	on storage"			
"	0.015	Impervious Manning	g 'n'"			
"	0.000	Impervious Max.inf	iltration"			
"	0.000	Impervious Min.inf	iltration"			
"	0.050	Impervious Lag cor	nstant (hours)"		
"	1.500	Impervious Depress	ion storage"			
"		0.011 0.8	861 0.797	0.000	c.m/sec"	
"	Ca	tchment 4001	Pervious	Impervious	Total Area	"
"	Su	irface Area	0.021	0.009	0.030	hectare"
"	Ti	me of concentration.	n 5.223	0.918	3.327	minutes"
"	Ti	me to Centroid	86.094	82.955	84.712	minutes"
"	Ra	infall depth	97.935	97.935	97.935	mm"
"	Ra	infall volume	20.57	8.81	29.38	c.m"
"	Ra	infall losses	47.395	5.151	34.722	mm"
"	Ru	noff depth	50.540	92.784	63.213	mm"
"	Ru	noff volume	10.61	8.35	18.96	c.m"
"	Ru	noff coefficient	0.516	0.947	0.645	"
"	Ma	ximum flow	0.008	0.004	0.011	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
		0.011 0.8	67 0.797	0.000"		
	33 CA	TCHMENT 4002"				
	1	Triangular SCS"				
	1	Equal length"				
	2	Horton equation"				
	4002	SILE ENTRANCE"				

"	90.000	% Impervious"					
"	0.010	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope"					
"	0.001	Pervious Area"					
"	5.000	Pervious length"					
"	2.000	Pervious slope"					
"	0.009	Impervious Area"					
"	5.000	Impervious length"					
"	2.000	Impervious slope"					
"	0.250	Pervious Manning 'n					
"	75.000	Pervious Max.infilt	ration"				
"	12.500	Pervious Min.infilt	ration"				
"	0.250	Pervious Lag consta	nt (hours)"				
"	5.000	Pervious Depression	storage"				
"	0.015	Impervious Manning	'n'"				
"	0.000	Impervious Max.infi	ltration"				
"	0.000	Impervious Min.infi	ltration"				
"	0.050	Impervious Lag cons	tant (hours)) "			
"	1.500	Impervious Depression	on storage"				
		0.004 0.86	7 0.797	0.000	c.m/sec'	1	_
	Ca	tchment 4002	Pervious	Impervious	Total A	irea	
	Su	rface Area	0.001	0.009	0.010		hectare"
	Ti	me of concentration	3.446	0.606	0.773		minutes"
	Ti	me to Centroid	84.155	82.875	82.950		minutes"
	Ra	infall depth	97.935	97.935	97.935		mm"
	Ra	infall volume	0.98	8.81	9.79		c.m"
	Ra	infall losses	48.287	9.708	13.566		mm"
	Ru	noff depth	49.647	88.227	84.369		mm"
	Ru	nott volume	0.50	7.94	8.44		c.m"
	Ru	nott coetticient	0.50/	0.901	0.861		
	Ма	X1MUM +LOW	0.000	0.004	0.004		c.m/sec"
	40 HY	DROGRAPH Add Runott					
	4	Add Runott "		0.000			
	20 CT	0.004 0.869	9 0./9/	0.000"			
	38 SI.	ARI/RE-START TOTALS	4002				
	3	RUNOTT IOTALS ON EX.	11		530	1	
		tal Catchment area		4	.5/0	nect	tare
		tal mpervious area		ך כב	.40Z 420"	nect	Lare
	10 10 EV	tar % TubeLAION2		32	.429		
	19 EX	1 I					