

350 Wellington Road 7

Functional Servicing and Stormwater Management Report

Project Location: 350 Wellington Road 7, Elora, ON

Prepared for: Elora 7 OP Inc.

Prepared by: MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

October 20, 2022 **Revised:** April 27, 2022 **Revised:** August 9, 2023

MTE File No.: 51060-100

Engineers, Scientists, Surveyors.

Contents

1.0	Introduction	1
1.1	Site Description and Official Plan/Zoning Designations	1
1.2	Proposed Development	1
1.3	Reviewing Agencies	1
2.0	Grading	3
2.1	Existing Topography	3
2.2	Existing Soils Information	3
2.3	Proposed Grading	3
3.0	Servicing	4
3.1	Water	4
3.2	Sanitary	5
3.3	Storm	6
4.0	Preliminary Stormwater Management Design	7
4.1	SWM Criteria	7
4.2	Legal Outlet	8
4.3	Surface Runoff Water Balance	8
4.4	Water Quantity Control	8
4.5	Water Quality Control1	13
4.6	Erosion & Sediment Control1	13
4.7	Infiltration Water Balance / Low Impact Development (LID)1	4
5.0	Conclusions1	14

Figures

Figure 1.0 – Site Location Plan	2
Figure 2.0 – Pre-Development Catchment Areas	10
Figure 3.0 – Post-Development Catchment Areas	11

Tables

Table 4.1 – Catchment Parameters	9
Table 4.2 – Stage-Storage-Discharge Information	.12
Table 4.3 – Summary of Flows	.12

Appendices

Appendix A	350 Wellington Road 7 Municipal Servicing Assessment & Preliminary
	Watermain and Sanitary Sewer Plan
Appendix B	Water Demand Analysis
Appendix C	Sanitary Flow Analysis
Appendix D	Storm Outlet Options
Appendix E	SWM Criteria Brief
Appendix F	Surface Runoff Water Balance Analysis
Appendix G	Storm Tank Sizing Sheets & MIDUSS Output
Appendix H	Stormceptor Sizing Output

Drawings

Existing Conditions Plan MTE Drawing No. C1.1	Appended Separately
Functional Grading Plan #1 MTE Drawing No. C2.1	Appended Separately
Functional Grading Plan #2 MTE Drawing No. C2.2	Appended Separately
Functional Grading Plan #3 MTE Drawing No. C2.3	Appended Separately
Functional Servicing Plan #1 MTE Drawing No. C2.4	Appended Separately
Functional Servicing Plan #2 MTE Drawing No. C2.5	Appended Separately
Functional Servicing Plan #3 MTE Drawing No. C2.6	Appended Separately

1.0 Introduction

MTE Consultants Inc. was retained by the property owner to complete a Functional Servicing and Stormwater Management (FS-SWM) Report for a new residential development to be constructed at 350 Wellington Road 7 (herein referred to as 'the Site') in the Town of Elora, located in the Township of Centre Wellington.

The purpose of this study is to support the Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBA) Applications. This will be accomplished by reviewing the opportunities and constraints for the subject property with respect to servicing, grading, and stormwater management; reviewing the requirements of the reviewing agencies; describing the development concept; and demonstrating the functional serviceability of the property.

1.1 Site Description and Official Plan/Zoning Designations

The Site comprises of approximately 4.46ha of agricultural land and is located on Wellington Road 7 between Wellington Road 18/Woolwich Street West and Middlebrook Road / David Street West, approximately 490m north of the Grand River. The Site is bounded to the east by Wellington Road 7 and bounded to the north, south and west by existing agricultural land. Existing residential properties and the Elora municipal cemetery are located on the other side of Wellington Road 7, fronting the Site. In addition, there are four Grand River Conservation Authority (GRCA) regulated wetlands adjacent to the Site; three to the northwest and one to the southwest. The southwest wetland regulation limit extends into the southwest portion of the Site. For the exact location of the Site refer to Figure 1.0.

The current Official Plan designation of the Site is Highway Commercial. The current zoning of the Site is Highway Commercial Zone, C2. The Official Plan and Zoning By-Law Amendment Applications are proposed to re-designate and re-zone the Site to allow for the development as outlined in the accompanying planning justification report.

1.2 Proposed Development

The proposed development for the Site is the construction of 35 townhome blocks complete with common drive aisles, surface parking, landscape and amenity areas. The proposed development is intended to create a 271 unit townhome community consisting of conventional, back to backs and double front live/work style townhomes. To create an inviting urban street-scape, which reflects the character of the Town and enhances the function of the community, it is proposed to urbanize the southbound lane of Wellington Road 7 from the northern portion of the Site to the intersection of Wellington Road 7 and Middlebrook Road / David Street West. Given the size of the proposed development, it is expected to be constructed in two phases from south to north. In order to service the development, the existing municipal sanitary sewer and watermain will be extended from the Wellington Road 7 and David Street West intersection to the Site. A municipal storm sewer will also be installed to allow for the urbanization of the southbound lane of Wellington Road 7.

1.3 Reviewing Agencies

Functional grading, servicing and stormwater management designs as well as this FS-SWM Report will be required for submission to the Township of Centre Wellington in support of the Official Plan Amendment and the Zoning By-Law Amendment Applications. The Township will also be responsible for the review and approval of site plans, lighting and landscape designs and ultimately issuing building permits.

October 19, 2022 10:48 a.m. Plotted By: NDalal

P:\P\51060\100\51060-100-F3.dwg

As the southwest portion of the Site falls within the GRCA Regulation limit, and the proposed storm sewer will ultimately outlet to the Grand River, the site engineering design will also be submitted to the GRCA for their review and approval. A 'Fill Permit' will be required.

Wellington Road 7 is a County Road. As such, the Wellington County will be circulated on the Official Plan Amendment and the Zoning By-Law Amendment Applications and will need to approve the functional site grading, servicing and stormwater management design as well as this FS-SWM Report.

2.0 Grading

2.1 Existing Topography

The Site is currently agricultural land with two driveway entrances off Wellington Road 7. In the existing condition, the Site drains via broad sheet flow to four main drainage paths based on the existing contours; to the southwest towards Wetland A, to the southeast towards the neighbouring agricultural lands, to the northeast towards Wellington Road 7 and to the northwest towards Wetland B. Fronting the Site, Wellington Road 7 has a rural cross-section with roadside ditches and no pedestrian walkways. There is an elevation difference of approximately 7.7m between the highpoint in Wellington Road 7 along the frontage of the Site and the low point at the southwest corner of the Site. The elevation difference occurs over the length of the Site at a gradual slope. The Site is fully pervious in the existing condition.

2.2 Existing Soils Information

A geotechnical investigation and hydrogeological assessment were undertaken by Grounded Engineering Inc. Their findings are documented in the Geotechnical Engineering Report, dated October 17, 2022 and in the Hydrogeological Assessment dated October 17, 2022, which are included with this submission.

The subsurface stratigraphy is generally comprised of topsoil underlain by disturbed soil consisting of sands and silts with trace to some clay and trace gravel. Beneath the disturbed soils, a sandy silt till with trace to some clay and trace gravel was encountered, followed by sands, underlain by a silt to clayey silt till with trace gravel. The sand deposit is of moderate permeability and will provide moderate recharge capability and groundwater movement, while the tills and disturbed soil deposits are of moderate to low permeability based on the in-situ testing and grain size analyses.

Based on the measured groundwater levels in the monitoring wells on May 17, 2022, the design groundwater table for engineering purposes is at Elev. 403.2 m at the north end of the Site decreasing to Elev. 397.7m at the south end of the Site. The groundwater depth below existing grade varies from 3.7mbgs at the north end of the Site to 0.8mbgs at the middle of the Site to 2.6mbgs at the south end of the Site. There is also perched water in the disturbed soils, which is flowing down towards the groundwater table. It is noted that the observed groundwater table will fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

Refer to the Geotechnical Engineering Report and the Hydrogeological Assessment by Grounded for more information.

2.3 Proposed Grading

The preliminary grading strategy for the proposed development was developed based on the topographic survey and the Conceptual Site Plan prepared by MHBC. Refer to the separately appended MTE Drawings, C2.1, C2.2 and C2.3, for the functional grading design for the Site.

MTE Consultants | 51060-100 | FS-SWM Report | 350 Wellington Road 7 | August 9, 2023

The proposed development has 35 townhome blocks complete common drive aisles, surface parking, landscape and amenity areas. The common drive aisles will be connected to Wellington Road 7 through two proposed driveway entrances; one at the north/middle and south end of the Site. The proposed townhome blocks finished floor elevations (FFE) vary from 408.55 at the north end of the Site to 403.30 at the south end of the Site. The finished floor elevations were set to follow the profile of Wellington Road 7, while ensuring at least 1.0m of separation was maintained between the underside of the footings to the groundwater elevations noted in Section 2.2. The proposed development is intended to create a 271 unit townhome community consisting of conventional, back to backs and double front live/work style townhomes. To create an inviting urban street-scape, which reflects the character of the Town and enhances the function of the community, it is proposed to urbanize the southbound lane of Wellington Road 7 from the northern portion of the Site to the intersection of Wellington Road 7 and Middlebrook Road / David Street West. This will include filling in the existing roadside ditch, installing storm sewers, curb and gutter and a multi-use pathway. It is understood that external infrastructure and road works will be designed and administered by the Township/County. On-site, the proposed grading strategy will respect the existing grades along the north, south and west property lines. Regrading will involve raising the east property line to accommodate the proposed urban road cross-section along with raising the majority of the Site to ensure groundwater separation is maintained and to direct the major overland flow route for the Site to the Wellington Road 7 right-of-way.

3.0 Servicing

The preliminary servicing strategy for the proposed development was developed based on the topographic survey, plan and profile information, Municipal Servicing Assessment by Triton Engineering Services Limited and the Conceptual Site Plan prepared by MHBC. Refer to the separately appended MTE Drawings, C2.4, C2.5 and C2.6, for the functional servicing design for the Site and the preliminary watermain and sanitary sewer plan in Appendix A by Triton for the functional municipal service extension design from the Wellington Road 7 and David Street West intersection to the Site. It is understood that external infrastructure and road works will be designed and administered by the Township/County. The proposed servicing strategy has been developed to accommodate the potential for a phase build out of the Site from south to north.

3.1 Water

There is an existing 100mm diameter municipal watermain along Wellington Road 7, from 321 Wellington Road 7 (the south end of the Site) connecting to an existing 300mm diameter municipal watermain along David Street West, located east of Wellington Road 7. There is also an existing 300mm diameter watermain along Wellington Road 7 south of David Street West, which connects to the 300mm watermain on David Street West at the intersection of Wellington Road 7, David Street West, and Middlebrook Road. The closest municipal fire hydrant is located on the east side of Wellington Road 7 in front of 311 Wellington Road 7. The Site is not currently serviced by municipal water.

A municipal servicing assessment was undertaken by Triton Engineering Services Limited. Their findings are documented in the 350 Wellington Road 7 Municipal Servicing Assessment, dated July 11, 2022, included in Appendix A. Their assessment indicates that the existing 100mm diameter municipal watermain along Wellington Road 7 does not meet Municipal Standards and is not adequate to convey fire flows to the Site. Additionally, Wellington Road 7 is intended as part of the future trunk watermain loop to service Salem area. As such, Triton recommends that the existing 100mm diameter municipal watermain be replaced with a 200mm watermain

extended north to, at a minimum, South Street so the existing 150mm watermain on South Street could be extended to connect to this proposed 200mm watermain. This will increase fire flows, ensure redundancy of supply and provide looping of the system. Assuming these recommendations are implemented as part of the external infrastructure and road works which will be designed and administered by the Township/County, an expected fire flow of 143.5L/s (8,610L/min) will be available at the Site with an expected static pressure of approximately 54psi at an elevation of 407m. Based on their assessment, the Centre Wellington Water system is expected to have sufficient capacity and pressure to supply the development for domestic and fire flows once the services discussed above are extended to the Site.

A new connection to the extended municipal watermain along Wellington Road 7 will be required in order to service the proposed development. The required private water service size(s) will be determined during detailed design but will be at least 150mm diameter. Each townhome will be serviced with a minimum 25mm diameter domestic connection off the private water service. Given the length of the Site, it is anticipated that seven new private hydrants will be required to service the proposed townhome blocks.

Preliminary water demands were calculated for the proposed development and are included in Appendix B. The maximum day domestic demand for the Site was determined to be 9.33L/s. In addition to the domestic demands, the pressures and flows in the extended system must be sufficient for firefighting conditions as established by the Ontario Building Code (2012). The minimum residual pressure under firefighting conditions is 140kPa (20.3psi) per OBC 2012 A-3.2.5.7 3(b). Preliminary fire flow demand calculations indicate that the required minimum water supply rate based on OBC and FUS is 150L/s (9,000L/min) and 400L/s (24,000L/min), respectively, for the worst-case block (Block 31). Since these fire flow demands are greater than the expected available fire flow of 143.5L/s (8,610L/min) at the Site, building components such as firewalls will need to be added during detailed design to reduce the required fire flow demand to the available fire flow level. It should be noted that even with building components the FUS fire flow demand may still not be met given the limitations of the existing water distribution system, but OBC fire flow demands will be met. Fire flow demands for all blocks, and associated firefighting capacity at each private hydrant, will need to be confirmed at detailed design.

3.2 Sanitary

There is no existing municipal sanitary sewer along Wellington Road 7; therefore, the Site is not currently serviced. There is an existing 200mm diameter municipal sanitary sewer on David Street West draining east. There is an existing 200mm diameter municipal sanitary sewer stub at the intersection of David Street West and Wellington Road 7.

Based on available topographical information from the GRCA mapping tool, there appears to be a 14.5m elevation difference between the south end of the Site and the location of the existing sanitary stub at the intersection of David Street West and Wellington Road 7. Therefore, there is adequate elevation change to extend the sanitary sewer along Wellington Road 7 in order to service the proposed development, and future developments along Wellington Road 7, with a gravity sewer. The existing 200mm diameter municipal sanitary sewer will be extended from the intersection to at least the south end of the Site, where a private sanitary service connection will be made and extended into the Site. It is proposed that the Site will be serviced by a new 200mm diameter sanitary sewer complete with a new manhole at the extended municipal sewer on Wellington Road 7. The private sanitary sewer will be installed at a slope that provides depth for the servicing of each townhome while maintaining adequate capacity. The service sizes and inverts will be confirmed at detailed design.

Based on Triton's municipal servicing assessment, the existing David Street Sanitary Pumping Station (SPS) has sufficient capacity to service the proposed development. In addition, the Elora Waste Water Treatment Facility (WWTF) is also expected to have sufficient capacity to treat the estimated flows produced by the proposed development. Municipal sanitary sewers will need to be extended to the Site as discussed above, but the existing downstream municipal sanitary sewers are also expected to have adequate capacity based on the current SPS configuration / pump rates.

A sanitary flow analysis has been prepared to determine the flows anticipated to be generated by the proposed development. Based on the Township's Development Manual, the anticipated average sanitary flow generation rate is 350L/d/capita and the average density is 3.09 persons/unit based on the 2021 Reserve Capacity Calculations for Centre Wellington. With the proposed townhome blocks having a total of 271 units and a Site area of 4.46ha, the resulting peak flow including infiltration is expected to be 13.72L/s from the Site. Refer to Appendix C for sanitary flow rate calculations. It should be noted that the Township Reserve Capacity Calculations includes allocation of 280 units for this development as confirmed by Triton, therefore, there is sufficient allocation for the proposed 271 unit townhome development.

3.3 Storm

Wellington Road 7 has a rural road cross-section along the front of the Site; therefore, there are no existing municipal storm sewers. However, there are roadside ditches along both sides of Wellington Road 7. The roadside ditches north of the highpoint in Wellington Road 7 drain toward Woolwich Street West, while the roadside ditches south of the highpoint in Wellington Road 7 drain toward David Street West / Middlebrook Road. Runoff from the roadside ditch along the northbound lane of Wellington Road 7 ultimately drains across the road to the west side of Wellington Road 7 via an existing 600mm CSP culvert at the intersection of Wellington Road 7 and David Street West / Middlebrook Road. From there, runoff collected from both roadside ditches (southbound and northbound) drain west through the roadside ditch along the north side of Middlebrook Road where it eventually crosses Middlebrook Road via an existing culvert, discharging through lands owned by the GRCA, and ultimately to the Grand River. Surface runoff from a majority of the Site is currently convey

ed overland to the southwest of the Site where it eventually enters Wetland A, which eventually discharges to a Grand River tributary and ultimately to the Grand River.

To create an inviting urban street-scape, which reflects the character of the Town and enhances the function of the community, it is proposed to urbanize the southbound lane of Wellington Road 7 from the northern portion of the Site to the intersection of Wellington Road 7 and Middlebrook Road / David Street West. The external infrastructure and road works will be designed and administered by the Township/County, but it is assumed a new municipal storm sewer will be installed along the frontage of the Site with catchbasin manholes spaced less than every 90 metres. The diameter of the municipal storm sewer will increase where the private storm sewer system connects to accommodate the flows from the Site. The proposed municipal storm sewer system will extend to the intersection of Wellington Road 7 and Middlebrook Road / David Street West. Beyond this point, two outlet options have been provided to the GRCA for review and comment. Option one proposes extending the proposed storm sewer across Middlebrook Road and further down Wellington Road 7 boulevard, toward the existing bridge, where it would daylight just upstream of the Grand River. This option would require minor regrading of the west boulevard along Wellington Road 7, to maintain cover over the storm sewer, and implementation of erosion control measures at the storm sewer outlet and/or between the outlet and the Grand River. Option two proposes terminating the proposed storm sewer along Wellington Road 7 at Middlebrook Road where runoff would continue to be

conveyed along the north side of Middlebrook Road where it eventually crosses Middlebrook Road via a culvert, discharging through lands owned by the GRCA, and ultimately to the Grand River as it does in the existing condition. This option would require possible upgrades to north roadside ditch along Middlebrook Road and the upsizing of the existing culvert crossing to accommodate the proposed flows. Refer to Appendix D for correspondence with the GRCA and illustration of both options. After review of the proposed storm outlet options, the GRCA has advised they prefer storm outlet option one given adequate erosion control measures at the outlet are implemented and velocities at the outlet point to the Grand River are kept as low as possible. The sewer sizes and inverts will be confirmed at detailed design, along with the requirements to implement the preferred storm outlet option. This work would be completed during the right-of-way works required to extend the municipal watermain and sanitary sewer.

A private storm sewer system will be installed on-site to collect runoff generated from the interior rooftops, landscape, drive aisles and parking areas. The runoff collected in the storm sewers will be directed to an OGS unit located in the south entrance to the Site prior to discharging to the proposed municipal storm sewer system in the Wellington Road 7 right-of-way. Runoff from the frontage of the property will sheet flow towards the Wellington Road 7 right-of-way. Runoff from the outer perimeter townhome blocks and landscape areas will be directed to the west property line, toward Wetland A and B, to maintain a surface runoff water balance to each Wetland. All townhomes with basements will require sump pumps.

4.0 Preliminary Stormwater Management Design

4.1 SWM Criteria

The stormwater management design criteria for the subject Site, as proposed to Triton in the SWM Criteria Brief by MTE dated September 12, 2022, to initiate discussion with Wellington County and the Township of Centre Wellington staff, are as follows:

- i) Establish a legal outlet(s) for the Site;
- ii) Maintain an annual surface runoff water balance to Wetland A and Wetland B;
- iii) Attenuation of the post-development peak flows for the 2-year through 100-year storm events to the allowable flow rate using a C value of 0.75;
- iv) Implementation of water quality controls; and,
- v) Provide erosion and sediment controls.

Refer to the SWM Criteria Brief in Appendix E for rationale as to why the Township's general stormwater management design criteria is not feasible for the subject Site and how the proposed criteria were established.

Since the receipt of the first OPA/ZBA application submission comments, which referenced back to the Township's typical water quantity control requirements, MTE has had correspondence with Triton who has confirmed the alternate SWM strategy outlined in August 2022 is being considered. Triton is not concerned about the capacity of the Wellington Road 7 system, as the system will be designed to accommodate the proposed flows from the Site, but has requested additional review of the outlet options and constraints from the proposed storm sewer to the Grand River.

The proposed storm outlet options are discussed in Section 3.3 of this report. The GRCA has advised that storm outlet option one is preferred. This option involves a proposed municipal storm sewer along Wellington Road 7, under Middlebrook Road, to the Grand River. As part of

the GRCA's review of the storm outlet options, they further reviewed the stormwater management design criteria for the subject Site and added the following criteria:

- i) Maintain existing drainage patterns;
- ii) Maintain an annual infiltration water balance across the Site; and,
- iii) Provide adequate erosion control measures at the storm outlet sized to withstand and convey the Regional storm event within the proposed municipal storm sewer and ditch.

Refer to Appendix D for correspondence with the GRCA regarding the preferred storm outlet and additional SWM criteria.

4.2 Legal Outlet

In the existing condition, the majority of the runoff from the Site is directed west across the neighbouring property via broad sheet flow to Wetland A and B. Generally, there is no right of drainage for surface water. Therefore, the only legal outlet for the Site in the existing condition is to the municipal right-of-way (Wellington Road 7).

In the post-development condition, it is proposed that the Site's private storm sewer system will outlet to the proposed municipal storm sewer along Wellington Road 7 which will ultimately outlet the Grand River, via one of the outlet options discussed in Section 3.3 of this report. The preferred storm outlet option design will be completed during detailed design in accordance with the criteria established by the GRCA. Through the Site grading design, the major overland flow route will also be directed to the Wellington Road 7 right-of-way. However, given the need to maintain a surface runoff water balance to Wetland A and B, an easement is currently being pursued with the neighbouring property owner to the west to legally allow surface drainage across the adjacent property to these wetlands. This will ensure existing drainage patterns are maintained.

It should be noted that even if an easement is obtained, the primary legal outlet for the Site should still be to Wellington Road 7.

4.3 Surface Runoff Water Balance

An annual surface runoff water balance to Wetland A and Wetland B will be achieved in the post-development condition by directing runoff from rooftop and landscape areas adjacent the west property line to the neighbouring property. From there, runoff will continue to sheet flow across the neighbouring property and into each wetland as it does in the existing condition. A preliminary annual surface runoff water balance analysis was completed for Wetland A and Wetland B resulting in a 34m³/yr and 67m³/yr net gain of runoff, respectively. Refer to Appendix F for the preliminary annual surface runoff water balance analysis calculations. The required catchment area to be directed to Wetland A and B is illustrated on the post-development catchment areas Figure 3.0 (Catchment 204 & 205, respectively).

It should be noted that being able to achieve a surface runoff water balance to Wetland A and B is conditional on obtaining an easement to allow surface drainage across the neighbouring property to the west.

4.4 Water Quantity Control

In order to successfully complete the preliminary stormwater management design for the Site, the following specific tasks were undertaken:

i) Calculate the pre-development runoff rates using MIDUSS NET and the allowable runoff rates using the Rational Method;

- ii) Determine the percent impervious of the Site and catchment parameters for inclusion in MIDUSSS modeling; and,
- iii) Calculate post-development runoff hydrographs using MIDUSS NET.

The following table summarizes the catchments used in modeling of the Site. The pre-development condition was separated into four catchment areas based on the existing drainage paths for the Site. The post-development condition was separated into five catchment areas; the controlled area and the uncontrolled areas. Figure 2.0 illustrates the limits of the pre-development catchment areas. Figure 3.0 illustrates the limits of the post-development catchment areas.

#	Catchment	Area (ha)	% Impervious	Pervious CN	Impervious CN	Slope (%)	Flow Length (m)	
Pre-D	Pre-Development Catchment Areas							
101	To Wetland A (Southwest)	2.981	0.0	75	98	3.5	200.0	
102	To adjacent property (South)	0.344	0.0	75	98	2.0	100.0	
103	To Wellington Road 7 (Northeast)	0.321	0.0	75	98	1.5	50.0	
104	To Wetland B 0.812 0.0 75 98		2.5	80.0				
Post-	Development Catchment A	reas						
201	Controlled Area to Wellington Road 7 (Southeast)	3.071	81.5	75	98	2.0	30.0	
202	Uncontrolled Area to Wellington Road 7 (Southeast)	0.240	68.0	75	98	2.0	5.0	
203	Uncontrolled Area to Wellington Road 7 (Northeast)	0.124	53.1	75	98	2.0	5.0	
204	Uncontrolled Area to Wetland A (Southwest)	0.763	48.8	75	98	3.0	20.0	
205	Uncontrolled Area to Wetland B (Northwest)	0.260	38.5	75	98	3.0	20.0	

Table 4.1 – Catchment Parameters

Based on the findings from the geotechnical investigation by Grounded, as detailed in Section 2.2, a pervious CN of 75 for grass areas is appropriate.

P:\P\51060\100\51060-100-F1.0.dwg

P:\P\51060\100\51060-100-F2.0.dwg

In order to achieve the stormwater management requirements for the Site, runoff generated from the interior rooftops, landscape, drive aisles and parking areas will be controlled with a properly sized outlet pipe to Wellington Road 7. Storage volume for the control outlet pipe will be provided in two underground storm tanks located at the south end of the Site. Refer to Appendix G for preliminary storm tank sizing sheets. The following table illustrates the stage-storage-discharge relationship of the storm system.

Elevation (m)	Head (m)	Outlet Pipe Flow (m³/s)	Volume (m³)	Remarks
399.000	0.00	0.00000	0.00	Estimated Invert of Storm Outlet Pipe
399.300	0.30	0.04841	0.00	Estimated Invert of Storm Tanks
401.000	2.00	0.45120	1088.49	Estimated Obvert of Storm Tanks
402.190	3.19	0.59990	1088.49	Top of Grate of CBMH41 & CBMH42

Table 4.2 – Stage-Storage-Discharge Information

With the addition of the 450mm diameter outlet control pipe with a 1.0% slope, the post-development runoff from the controlled portion of the Site for the 5-year and 100-year storm events is controlled to 0.221m³/s and 0.435m³/s, respectively. The following table summarizes the expected flows that will be generated by the whole Site. Refer to Appendix G for the MIDUSS NET output, but please note that these flows are subject to change at the detailed design stage.

Table 4.3 – Summa	ry of Flows
-------------------	-------------

Modelling Condition	2-Year Storm Event (m ³ /s)	5-Year Storm Event (m³/s)	10-Year Storm Event (m ³ /s)	25-Year Storm Event (m ³ /s)	50-Year Storm Event (m ³ /s)	100-Year Storm Event (m ³ /s)
Pre-Development – Total Site	0.036	0.102	0.171	0.277	0.377	0.491
Allowable (C=0.75) – Total Site	0.511	0.724	0.887	1.055	1.202	1.349
Post-Development – Total Site	0.255	0.350	0.439	0.545	0.640	0.749
Pre-Development – to Wetland A	0.022	0.064	0.107	0.174	0.237	0.308
Post-Development – to Wetland A	0.086	0.121	0.153	0.182	0.212	0.237
Pre-Development – to Wetland B	0.009	0.024	0.040	0.064	0.089	0.112
Post-Development – to Wetland B	0.023	0.033	0.042	0.051	0.060	0.073
Pre-Development – to Wellington Road 7	0.004	0.010	0.017	0.028	0.037	0.048
Post-Development – to wellington Road 7	0.172	0.246	0.301	0.376	0.423	0.481

Note: Time of Concentration (Tc) of 20 mins was used in the rational method calculations to determine the allowable flow rates.

With the addition of the outlet control pipe, the post-development runoff from the Site is controlled well below the allowable peak flow rates based on a runoff coefficient of 0.75 requested in the SWM Criteria Brief. This results in reduced storm pipe sizes on-site and off-site, reduces the additional peak flow rate to Wellington Road 7 while still avoiding over controlling the Site given the proximity to the Grand River. This helps allow the peak flow from the Site to occur in advance of the peak flow from the Grand River's upstream drainage area.

Peak flow rates leaving the Site towards Wetland A and Wetland B are increased in the smaller storm events but are reduced in the larger storm events. This is a result of the increase in impervious area directed to the wetlands but the reduction in catchment area. These peak flow rates will be attenuated further as they sheet flow across the agricultural lands and by the natural features of the Wetlands. It should be noted that the proposed wetland catchment areas are dictated based on the water balance requirements discussed in Section 4.3.

Downstream of Wetland A, a GRCA regulated watercourses conveys runoff from the wetland to the Grand River. During an open house for this proposed development, a property owner adjacent to this watercourse brought up concerns with an existing culvert restricting flow and keeping the upstream water levels quite high close to their barns finished floor elevation. It is unknown if this culvert in question is a municipal or private culvert, but it should be investigated during detailed design to design to ensure downstream impacts are avoided and by the Township/Owner as it appears to be an issue in the existing condition. Cleaning out this culvert or upsizing it may be required.

4.5 Water Quality Control

A Stormceptor EFO10 will be installed on the private storm sewer system to provide water quality control for the Site (Catchment 201). The chosen unit is expected to provide Enhanced Level water quality control. Refer to Appendix H for the sizing output from the Stormceptor Expert program. The Stormceptor will require regular annual maintenance to ensure it is operating properly. The owner may be required to enter into a maintenance agreement with a suitable contractor to complete this work. In addition, all the storm structures will have a 600mm sump.

Runoff from the frontage of the property and towards the wetlands will be from rooftop and landscape areas which are considered "clean"; therefore no quality controls are required for those catchment areas (Catchment 202, 203, 204 and 205).

4.6 Erosion & Sediment Control

Precautions will need to be taken during construction to limit erosion and sedimentation. Typically, the following measures are recommended during construction for erosion and sedimentation control:

- Erosion and sedimentation facilities are to be installed prior to any area grading operations;
- ii) All erosion control measures are to be inspected and monitored by the contractor and repairs are to be completed as required;
- iii) All materials and equipment used for the purpose of site preparation and project completion should be operated and stored in a manner that prevents any deleterious substance from leaving the Site;
- iv) Construction of temporary swales to direct runoff to a sedimentation basin, with rock check dams as required to control velocities;

- v) Stripping and strategic placement of topsoil stockpiles. Placement of sediment control fencing around all stockpile areas;
- vi) Re-vegetation of completed areas as soon as possible after construction, including those areas not slated for construction, within 60-days of rough grading; and,
- vii) To minimize the amount of mud being tracked onto the roadway, a mud mat should be installed at the primary construction entrance.
- 4.7 Infiltration Water Balance / Low Impact Development (LID)

Based on the findings of the geotechnical investigation and hydrogeological assessment by Grounded, as detailed in Section 2.2, there is only 3.7 m at the north end of the Site to 0.8m at the middle of the Site to 2.6m at the south end of the Site between the existing grade and the groundwater table across the Site. This shallow groundwater table is not ideal for the installation of a traditional on-site infiltration gallery given the required 1m vertical separation between the bottom of the gallery and the seasonal high groundwater table. In addition, the soils above the observed groundwater table were noted to be moist to wet, further indicating the Site may not be suitable for an infiltration gallery. However, this will be reviewed further during detailed design given the majority of the Site is being raised and best efforts will be made to maintain an annual infiltration water balance across the Site. Other LID methods such as amended topsoil will also be explored during detailed design to help promote at-surface infiltration.

It should be noted that adding on-site infiltration will help reduce the runoff volume and peak flow rate directed to the proposed storm sewer along Wellington Road 7.

5.0 Conclusions

Based on the foregoing analysis, it is concluded that:

- The proposed grading design will match into existing grades along the north, south and west property boundaries, and will raise the grade along the east property boundary and the majority of the Site to achieve an overland flow route to the municipal right-of-way.
- The proposed development will include urbanizing the southbound land of Wellington Road 7 from the northern portion of the Site to the intersection of Wellington Road 7 and Middlebrook Road / David Street West to create an inviting urban street-scape, which reflects the character of the Town and enhances the function of the community.
- Existing municipal infrastructure for water and sanitary servicing is available at the intersection of Wellington Road 7 and David Street West and will be extended along Wellington Road 7 to service the Site.
- Installation of a municipal storm sewer will be required, and outlet directly to the Grand River or existing roadside ditches along Middlebrook Road, to urbanize the southbound land of Wellington Road 7 and provide storm servicing to the Site.
- The existing municipal infrastructure, Elora WWTF and Centre Wellington Water system are expected to have sufficient capacity to support the proposed development. The expected max day domestic water demand for the Site is 9.33L/s. The expected available fire flow demand is 143.5L/s (8,610L/min) at the Site, building components such as firewalls will need to be added during detailed design to reduce the required fire flow demand to the available fire flow level. The expected peak sanitary flow rate is 13.72L/s and the These flow rates are provided to the Township for inclusion in their model.

 The SWM criteria, established in the SWM Criteria Brief, can be satisfied and with the implementation of on-site controls for water quantity and water quality. A surface water runoff balance can be maintained to Wetland A and Wetland B through grading and will result in a small net gain in annual runoff over pre-development site conditions, given an easement with the neighboring property owner to the west can be obtained. A Site Infiltration Water Balance/LID methods will be explored during detailed design.

Additional grading, servicing and stormwater management details will be provided during detailed design.

All of which is respectfully submitted,

MTE Consultants Inc.

Tyler Arndt, E.I.T. Designer 519-743-6500 ext. 1386 tarndt@mte85.com

Lynn Ingram, P.Eng. Design Engineer 519-743-6500 ext. 1381 lingram@mte85.com

TMA:dlb M:\51060\100\Reports\FS-SWM Report\rpt_2022-10-20_FS-SWM Report_Rev. 2023-08-09.docx

350 Wellington Road 7 Municipal Servicing Assessment & Preliminary Watermain and Sanitary Sewer Plan

Memorandum	DATE:	July 11, 2022
	TO:	Chantalle Pellizzari
	FROM:	Dustin Lyttle & Ray Kirtz
	RE:	350 Wellington Road 7 Municipal Servicing Assessment
	FILE:	A6764A
	Memorandum	Memorandum DATE: TO: FROM: RE: FILE:

Introduction:

The following memo is intended to provide insight on the expected downstream sanitary sewer capacity, water system operating conditions and available municipal water for fire fighting purposes within the proposed 350 Wellington Road 7 (W.R.7) condominium development. A concept plan was provided by the developer that outlined the proposed 280 townhouse units on the 4.45 ha development area.

Sanitary Servicing:

David Street Sewage Pumping Station:

Existing Run-Times:

The Township provided historical data indicating the hours that the pumps operated each day over the past 3years. On average, Pump One runs for 18 minutes each day, and Pump Two runs for 13 minutes each day. The maximum time that Pump One has operated was on April 29th, 2021 for 3.9 hours. For Pump Two, this occurred on April 30th, 2021, operating for 1.4 hours. Based on historical data, the high flows do not correlate with a rain event, and therefore are expected to be the result of operation occurring at the neighbouring small community centre and curling club.

Existing Pump Rates:

There is no flow metering at the David Street SPS, therefore, Triton/Twsp staff performed a series of drawdown tests in order to estimate the pumping rate. The pumps do not have variable frequency drives, and therefore operate at full speed when running. The tests revealed that Pump One pumps at a rate of 2.55 L/s, and Pump Two at a rate of 15.7 L/s. When the pumps are run at the same time, they pump at a combined rate of 15.3 L/s. These calculations are outlined in Table 1 below.

Parameter	Pump	o One	Pump Two	Pumps One & Two
Falameter	1 st Run	2 nd Run	1 st Run	1 st Run
Run Time (s)	90	120	120	120
Initial Depth (m)	2.45	1.64	2.40	2.00
Final Depth (m)	2.39	1.59	2.00	1.61
Change in Depth (m)	0.06	0.05	0.400	0.39
Volume of Sewage (L)	282.7	235.6	1,884.8	1,837.7
Pump Rate (L/s)	3.14	1.96	15.7	15.3

Table 1 – Pump Drawdown Test Results

Note: the diameter on the wet well was measured as 2.45m on site.

During the pump test, it was observed that Pump One was not operating properly and causing significant turbulence, indicating that the impeller volute may be cracked or broken, which may provide explanation of the low pump rate. It was also observed that the flow was coming through the overflow check valve from the adjoining

tank into the wet well during the pump test at low liquid levels. For this reason, it is expected that both pumps may be able to operate at higher rates than noted, and that the 15.7 L/s is a conservative value. This assumes that Pump One is repaired.

Existing Flow Rates:

Using the existing run times and pump rates, the existing flow rates received by the pumping station can be calculated. The pumping station currently services 48 units, or **149 people**, as well as a small community centre and curling club. The average existing daily flow rate is **0.18 L/s** (15.2 m³/day). The maximum existing day flow rate was calculated based off of the day where the greatest volume of sewage was pumped. This occurred on April 29th, 2021, resulting in a maximum day flow of **0.94 L/s** (81.0 m³/day).

From this, an average existing per person flow rate of **102.0 L/capita/day** (315.1 L/unit/day) was determined. The maximum day existing per person flow rate is **543.4 L/capita/day** (1679.0 L/unit/day) Further to this, it is worth noting that the existing per person flow rates include any additional flows contributed by ICI users.

Proposed Development Loading:

The 2021 Reserve Capacity Calculations (RCC) for Centre Wellington reported that the current system has an average density of 3.09 persons/unit, a maximum day water demand of 0.92 m³/day/unit (297 L/d/capita), and an average daily sewage flow of 0.664 m³/day/unit (215 L/d/capita).

Based on the expected populations of the proposed development, and considering both sanitary the flow rates from the RCC (226 L/d/capita), as well as values outlined by the MOE (450 L/d/capita), the total expected peak sanitary sewage flows produced may range from **8.58 L/s** (740.9 m³/day) to **17.07 L/s** (1475.1 m³/day) (using a calculated Harmon peaking factor of 3.84).

Expected Flow Rates from the Combined Existing and Proposed Development:

The flows generated from this development will be directed to the David Street Sewage Pumping Station (SPS), which pumps across the David Street bridge to a manhole at the north end of Smith Street. From this manhole it flows down Victoria Street through the downtown area, ultimately discharging to the Clyde St. SPS where it is then again pumped to the Elora WWTP.

As seen in the following table, the average day flows to be directed to this SPS, including the existing users and subject development, are estimated between **2.51 L/s** and **4.62 L/s**. This will result in the pumps running between 44 and 80 times per day for approximately 5 minutes, based on the volume available between the design set points within the wet well, for a total run-time of 4 to 7 hours a day.

ADF (L/capita/day)	Expected Flow Rate (L/s)	Cycle Duration (minutes)	Frequency (times/day)	Total Hours Operating per day
226	2.23	5.35	41	3.7
450	4.62	5.35	80	7.0

Table 2 – Effect of Average Flows on Pump Run Time

The flows directed to the SPS are estimated between **8.76 L/s** and **17.255 L/s** when peaked using the Harmon formula and combined with the historic maximum day flows calculated at the SPS. Although the highest peak flow exceeds the measured capacity of the pumps, these flows are not expected to occur for a long duration, or frequently and therefore can be attenuated by the existing stations storage capacity. Further to this, due to the emergency storage contribution during the pump test, the expectation is that the pumps have greater capacity that has not been quantified.

Emergency Storage:

The SPS overflow chamber provides emergency storage (14.36 m³) in the event that both pumps fail. Based on the RCC ADF, the time the Township has before the overflow begins discharging to the environment is over 95 hours under average day flows, and over 24 hours under peak day flows. When considering the MOE ADF, the emergency storage provides over 51 and 13 hours under average day flows and peak day flows.

Existing Sewer & Forcemain Capacity Assessment:

An existing 200mm diameter sanitary sewer is located on David Street which discharges into the David SPS. To service the subject development, a 200mm sanitary sewer needs to be extended north along W.R.7 from David Street. The existing sewer on David St. has sufficient capacity to convey flows from the subject development to the SPS.

The hydraulic capacity of the sanitary sewers downstream of the discharge point were explored using the existing and future condition SewerCAD model. The system was modelled under both the existing and developed condition scenarios with the developed condition scenario including complete build out of all current known developments and within the current urban boundary.

Conveying the specified pump rate of **15.7 L/s** during the peak day flow condition identified a number of sections of sewer that are surpassing, or close to, their theoretical capacity based on modelling. These sections are indicated in the following table.

	Percent Full							
Sewer Section	Existing Condition	Future Developed Condition						
MH-133 to MH-134 on Victoria Cr.	70.0%	102%						
MH-140 to MH-141 on Price St.	82.4%	118%						
MH-141 to MH-144 on Church St. W	68.4%	97%						

Table 3 – Sewer Capacity

The velocity of the sewage discharged from the SPS through the 100mm forcemain is 2.00 m/s, which is within MOE guidelines.

Reserve Capacity:

As indicated within the 2021 RCC for the Elora Wastewater Treatment Facility (WWTF), there are 2,774 uncommitted units remaining in treatment capacity which includes the proposed development of 280 units.

Water Servicing:

The existing water distribution system does not provide servicing to the subject site. Currently, a 100mm diameter Asbestos Cement watermain is located along the east side of W.R.7 to approximately 250m north of David Street which serves the residences fronting this section of W.R.7. This main does not meet Municipal Standards and is not adequate to convey fire flows to the subject site. Additionally, W.R.7 is intended as part of the future trunk watermain loop to service the Salem area.

As such, it is recommended that the existing 100mm watermain on W.R.7 be replaced with a 200mm watermain extended north to, at a minimum, South Street. Further, the existing 150mm watermain on South Street should be extended northerly/westerly to connect to the future W.R.7 watermain. This will increase fire flows, ensure redundancy of supply, and provide looping of the system.

Following these recommendations, an expected fire flow of 143.5 L/s will be available at the site with an expected static pressure of approximately 54PSI at an elevation of 407m

The 2021 RCC for the Centre Wellington Water System indicate that there are 1,113 uncommitted units available in water supply capacity which includes the proposed development of 280 units.

Stormwater:

The subject site slopes westerly (i.e., away from W.R.7) where runoff sheet flows onto another agricultural property. It may be necessary to investigate and secure an adequate outlet to the west. It is possible that part of the site could be graded to drain to W.R.7 where the existing ditch drains southerly to Middlebrook Road, then westerly along Middlebrook Road to an eventual outlet to the Grand River. Wellington County will need to be consulted and approve any stormwater design intended to discharge to their ROW.

Regardless of the outlet, it is recommended at this preliminary stage that Enhance Quality Treatment and Postto-Pre-Peak Flow attenuation be provided. The southwest portion of the site is within a GRCA regulation limit, therefore GRCA approval of stormwater design must be obtained.

Conclusion:

David St. SPS & Reserve Capacity

As noted above the existing per person flow rates are lower than those reported in the RCC. However, as a factor of safety, we believe it is reasonable to assess the SPS using the RCC per person flow rates. This results in the existing SPS having sufficient capacity to service the development, although repairs and improvements are warranted given the current condition.

To further assess the impact of this development, we completed the assessment utilizing the MOE recommended value of 450L/capita/day which are 99% larger than the current RCC flow rates. Although considering these flows result in the current station being under sized, we do not believe these flows are realistic. Further to this, given the large overflow/emergency storage available and the opportunity to adjust float elevations, it is our opinion that the current station is adequately sized to attenuate the flows in the rare event larger flows are realized.

Additionally, the Elora WWTF is expected to have sufficient capacity to treat the estimated flows produced by the development.

Existing Sewers:

Based on the current SPS configuration/pump rates, it is expected that the downstream sewers will have adequate capacity. As a point of clarification, following development build-out the pumps will run more frequently, albeit at the same rate, resulting in no increase in flow rate directed to the existing downstream sewer system. However, it is worth noting that as Elora continues to develop there may be some areas of concern, as noted previously. These should be closely monitored moving forward to reduce the risk of surcharge events.

Sanitary sewers will need to be extended to the proposed development frontage, however the existing sewers on David Street are expected to have sufficient depth and capacity to service this development.

Water Servicing:

Based on the above analysis/recommendations, the expected system pressures and fire flow available in the site is expected to be acceptable for typical housing needs. However, the adequacy of the fire flows will need to be confirmed by the developer and their agents based on building specifics.

Further to this, the Centre Wellington Water system is expected to have sufficient capacity to supply the Development once services are extended to the site.

Stormwater Management:

As discussed above, an enhanced level of treatment and GRCA permitting is expected. Additionally, Wellington County approval of drainage to their ROW is required. Further, GRCA is to be consulted regarding SWM requirements to development of the site.

If you have any questions or concerns, please do not hesitate to contact us.

Water Demand Analysis

350 Wellington Road 7

WATER FLOW DEMANDS Elora, Ontario Project #: 51060-100 Date: August 4, 2023

Design By: TMA Checked By : LEI

																	Fire Fl	ow ^{2,5}							Dom	estic Flow	3,4		
Development Information ^{1,5}						Ontario Building Code			Fire Underwriters Survey																				
Node ID / Area ID / Building #	F.F.E. (m.a.s.l.)	Description	# of Units	Site Area	Population	Bldg Area (1 st Floor)	Total Bldg Area	Building Volume	к	V	S _{tot}	Q	F	F	С	A	F	(2) Occupancy Reduction	(3) Sprinkler Protection	(4) Building Exposure	F I /min	F	Fire Flow (Max OBC /FUS)	2021 RCC Guidelines	Average Day	Max Day	Peak Hour	Minimum Hour	Max Day + Fire Flow
	Varies	Townhouse Block	271	4.46	837	948	2,875	7,763	23	7,76	3 2.00	357,120	9,000	150	1.50	2,46	0 16,00) -15%	6 09	6 75%	6 24,000	400	400	3.392	3.392	9.329	14.112	1.357	409
		TOTALS FOR SITE	271	4.46	837	948	2875	7763		Gover	ning OBC	C Fire Flov	v =	150						Max F	Fire Flow =	400	400	3.39	3.39	9.33	14.11	1.36	409
																							Sum	of Maximu	um Day Flo	ows + OBC	Fire Flo	ow (L/s) =	159
																							Sum	of Maxim	um Dav Fl	ows + FUS	Fire Flo	w(L/s) =	409

Assumptions:

1 The building area, volume and units are based on the Conceptual Site Plan by MHBC and are based on the worst case block (Block 31). Assumed 3.09 ppu based on 2021 Reserve Capacity Calculations (RCC) for Centre Wellington.

2 The building is classified as occupancy group C (Residential Occupancy) with limited combustible contents. All units The building construction type was assumes to be combustible.

3 Average Day Demand based on the Township of Centre Wellington Development Manual:

Residential = 350 L/cap/day

4 Peaking Factors based on "Design Guidelines for Drinking-Water Systems" (MOE, 2008):

Average Day =	1
Maximum Day =	2.75
Peak Hour =	4.16
Minimum Hour =	0.4

5 The raised deck/patio was included in the calculations. The basement was not included in the FUS calculations given at least 50% of it is below grade.

Sanitary Flow Analysis

350 Wellington Road 7 Sanitary Flow Rate Analysis

Elora, Ontario

 Project #:
 51060-100

 Date:
 August 4, 2023

 By:
 TMA

 Checked By:
 LEI

	Sanitary Flow Calculations										
Land Use	Site Area	# of units ¹	Equivalent Population Density ²	Population	Average Per Capita DWF ³	Average Flow	Peaking Factor ⁴	Peak Flow	Infiltration ⁵	Total Average Flow + Infiltration	Total Peak Flow + Infiltration
	(ha)		(ppu/ppha)	(capita)	(L/cap/d)	(L/s)		(L/s)	(L/s)	(L/s)	(L/s)
Residential	4.46	271	3.09	837.39	350.00	3.39	3.85	13.05	0.67	4.06	13.72

Assumptions:

1 Unit count of 271 was obtained from the Conceptual Site Plan prepared by MHBC

2 Based on 2021 Reserve Capacity Calculations (RCC) for Centre Wellington, a rate of 3.09 ppu was used.

3 Average residential sanitary design flow of 350 L/cap/d was used per the Township of Centre Wellington Development Manual.

4 Residential Harmon Peaking Factor Formula per the Township of Centre Wellington Development Manual;

 $F=1+(14/(4+P^{0.5})) \qquad \text{Where P = population (in thousands)} \qquad F=\min 2.0, \max 4.0$

5 Infiltration Rate of 0.15 L/s/ha was used per the Township of Centre Wellington Development Manual.

Storm Outlet Options

Tyler Arndt

From:	Ray Kirtz <rkirtz@tritoneng.on.ca></rkirtz@tritoneng.on.ca>
Sent:	Tuesday, March 28, 2023 4:14 PM
То:	Tyler Arndt
Cc:	Lynn Ingram; Dustin Lyttle
Subject:	RE: 350 Wellington Rd 7, Elora - Storm Water Management
Follow Up Flag:	Follow up
Flag Status:	Flagged

Hi Tyler;

Approach to confirm SWM strategy/criteria is acceptable.

Regarding comments that can be deferred to detailed design, highlighted items are OK except;

• Items related to SWM Storage sizing needs to be addressed as part of OPA and ZBA Applications to confirm site layout/configuration. This would include comments 1.19, 1.20, 1.23, 1.24 and 1.26.

/Ray

From: Tyler Arndt <TArndt@mte85.com>
Sent: March 27, 2023 12:29 PM
To: Ray Kirtz <rkirtz@tritoneng.on.ca>
Cc: Lynn Ingram <LIngram@mte85.com>; Dustin Lyttle <dlyttle@tritoneng.on.ca>
Subject: RE: 350 Wellington Rd 7, Elora - Storm Water Management

Hi Ray,

Thank you for providing your notes from our August 2022 meeting regarding an alternate SWM Strategy, they generally align with ours and what we expected to see in Triton's Engineering Review Comments... we will continue our functional design on this bases.

As suggested, we will be reaching out to the GRCA to discuss the proposed outlet beyond the WR7 and Middlebrook intersection to review the adequacy of the outlet and if they have any specific requirements which need to be met... I will follow up after to inform you of the outcome of these discussions, at which point a meeting may be required to discuss what Triton will require for review of this outlet at this functional design stage to support the OPA and ZBA Applications given design flexibility and review during detailed design.

On the topic of functional design vs detailed design, we have reviewed Triton's Engineering Review Comments and believe the majority of them are requesting information above and beyond that typically required at a functional design stage and request they be differed to detail design. I have attached our comment response matrix and have highlighted Triton's Engineering Review Comments related to MTE's design that we believe should be differed. Please review and confirm if you're in agreement, we would be happy to attend a meeting to discuss the comments in question further if required.

Thanks, Tyler Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | TArndt@mte85.com

From: Ray Kirtz <<u>rkirtz@tritoneng.on.ca</u>>
Sent: Monday, March 13, 2023 11:50 AM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>; Dustin Lyttle <<u>dlyttle@tritoneng.on.ca</u>>
Subject: RE: 350 Wellington Rd 7, Elora - Storm Water Management

Hi Tyler,

I have reviewed my notes from our August 2022 meeting and you are correct that an alternate SWM strategy was considered as follows;

- Currently no runoff is directed to WR7 from this site, however, an appropriate outlet is needed and this is only one available. Obviously, they can't achieve post-pre on the runoff to WR7. Not sure the value of trying to achieve post-pre for the site as it will require significant storage since the proposed site is very high imperviousness. Suggested that the hydraulic considerations (ditch, culverts, watercourse) of the outlet along WR7, Middlebrook and watercourse to the river be reviewed to determine if there are any limitations/concerns with this outlet.
- A quantity control strategy which provides attenuation to a level that is feasible to implement within the proposed site configuration should be looked at.

Based on this, the outlet constraints would need to be reviewed, which I don't believe was done on the previous submission. We're not too worried about WR7 system since we're going to be designing this system to accommodate whatever flows come from the site. That said, controlling the flows on-site will reduce the size/cost of this future system on WR7.

However, the storm system downstream on Middlebrook and across GRCA property to the Grand River will need to be considered if flows to this system are going to be increased. Also, we'd suggest that you touch base with GRCA regarding the adequacy of the outlet across their property and any specific requirements they have.

If you want to discuss this please contact me.

/Ray

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: March 10, 2023 2:12 PM
To: Ray Kirtz <<u>rkirtz@tritoneng.on.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>; Dustin Lyttle <<u>dlyttle@tritoneng.on.ca</u>>
Subject: RE: 350 Wellington Rd 7, Elora - Storm Water Management

Hi Ray,

I hope all is well with you.

Based on our meeting back in August 2022, it was understood that the typical quantity control SWM Criteria (Post to Pre) should not apply to this Site given the existing conditions and that a new storm sewer is proposed to be installed along Wellington Road 7... We recently received Triton's Engineering Review Comments which note that the proposed SWM criteria is not acceptable given the size of the proposed development and that post-development flows are to be

within the pre-development rates, requesting the typical quantity control SWM Criteria which we discussed was not feasible given the Site's circumstances. Given this, we would like to request another meeting with Triton to review the quantity control SWM Criteria for the Site and come up with a resolution that works for all parties.

Please provide your availability over the next week or two so we can find a suitable time to meet... In addition, we believe it would be best to have any required parties from the Township or County in attendance so please pass this email on accordingly.

Thanks, Tyler

 Tyler Arndt, E.I.T. | Designer

 MTE Consultants Inc.

 T: 519-743-6500 x1386 | TArndt@mte85.com

 From: Zenthus Anyalemechi <ZAnyalemechi@mte85.com>

 Sent: Monday, September 12, 2022 2:37 PM

 To: 'Ray Kirtz' <rkirtz@tritoneng.on.ca>; Dustin Lyttle <dlyttle@tritoneng.on.ca>

 Cc: Lynn Ingram <LIngram@mte85.com>; Tyler Arndt <TArndt@mte85.com>

 Subject: RE: 350 Wellington Rd 7, Elora - Storm Water Management

Good day Ray, we have completed a preliminary SWM brief based on our discussions during our meeting on the August 24th.

Let us know if you have any comments/concerns.

Please click on the following link to download the attachments: <u>https://files.mte85.ca/message/jgbsX8bVkHI9rRikeEg1A0</u> The attachments are available until: **Monday, 26 September.**

FILES INCLUDED IN THIS LINK: SWM Criteria Brief.pdf 2.68 MB

Thanks

Client First | Right Solution | Work Together Zenthus Anyalemechi, M.Eng., P.Eng. *Project Manager* Kitchener x1321

From: Ray Kirtz <<u>rkirtz@tritoneng.on.ca</u>>
Sent: Tuesday, August 23, 2022 4:36 PM
To: Zenthus Anyalemechi <<u>ZAnyalemechi@mte85.com</u>>
Cc: Dustin Lyttle <<u>dlyttle@tritoneng.on.ca</u>>
Subject: RE: 350 Wellington Rd 7, Elora - Storm Water Management

Hi Zenthus,

Typically the Twsp/Cty would require Post to Pre quantity control for a development unless there are extenuating circumstances that make this not feasible.

I am available most of tomorrow (except 3- 3:30) to discuss if you would like.

/Ray

From: Zenthus Anyalemechi <ZAnyalemechi@mte85.com>
Sent: August 17, 2022 11:58 AM
To: Ray Kirtz <<u>rkirtz@tritoneng.on.ca</u>>
Subject: FW: 350 Wellington Rd 7, Elora - Storm Water Management

Good day Ray, we are having some conversations around the SWM for this site and would like to add you to this conversation.

While we are looking at maintaining flows to the wetland per existing conditions and to meet GRCA requirements our primary legal outlet remains WR7.

We would like to discussed with the township and County to come up with an appropriate release rate for our Site, since our client will be urbanizing a portion of the WR7 to eliminate the ditch.

Currently working with post to pre will require huge storage within our site given that the site is 100% pervious under pre development condition.

Please let me know your thoughts and if we can set up a meeting to discuss.

Zenthus Anyalemechi, M.Eng., P.Eng. | Project Manager MTE Consultants Inc. T: 519-743-6500 x1321 | ZAnyalemechi@mte85.com 520 Bingemans Centre Drive, Kitchener, Ontario N2B 3X9 www.mte85.com | Twitter | LinkedIn | Instagram | Facebook

Notice: The electronic information provided is confidential and privileged, and may not be used for purposes other than work related to the subject project. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the data contained, either expressed or implied.

Tyler Arndt

From:	Laura Warner <lwarner@grandriver.ca></lwarner@grandriver.ca>
Sent:	Wednesday, July 19, 2023 11:38 AM
То:	Tyler Arndt
Cc:	Jessica Conroy; Lynn Ingram
Subject:	RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review
Attachments:	GRCA Comments-OP01-22 & RZ17-22 - 350 Wellington Road 7.pdf

HI Tyler,

GRCA staff have already provided clearance to the OPA and ZBA applications through our attached comments provided to the Township in January. Our review of the materials provided to date have been at a higher level given the nature of the applications, understanding that detailed design review will be completed through subsequent planning applications/GRCA permit.

Your understanding of our SWM criteria is correct and we understand these requirements will be addressed through detailed design. If any requirement cannot be met in full (i.e. achieving an annual infiltration water balance across the site) best efforts to achieve the requirement should be demonstrated with appropriate rational.

Without reviewing a detailed design submission, I would suggest it is premature for GRCA to comment on whether our requirements have been met at this time.

If you have any questions, please let me know.

Kind regards, Laura

Laura Warner Resource Planner Grand River Conservation Authority

400 Clyde Road, PO Box 729 Cambridge, ON N1R 5W6 Office: 519-621-2763 ext. 2231 Toll-free: 1-866-900-4722 Email: <u>lwarner@grandriver.ca</u> www.grandriver.ca | <u>Connect with us on social media</u>

From: Tyler Arndt <TArndt@mte85.com>
Sent: Tuesday, July 18, 2023 10:26 AM
To: Laura Warner <lwarner@grandriver.ca>
Cc: Jessica Conroy <jconroy@grandriver.ca>; Lynn Ingram <LIngram@mte85.com>
Subject: FW: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Laura,

I hope all is well with you.

I got an automatic reply from Jessica's email noting she will be returning on July 24, 2023 which is why I am reaching out... We are hoping the GRCA can review the consolidated SWM criteria summarized below and confirm the

requirements are covered as we are looking to complete our OPA and ZBA Application resubmission within the next week and need this confirmed prior to doing so. Anything to expedite this confirmation while Jessica is off is much appreciated.

Thanks, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | <u>TArndt@mte85.com</u>

From: Tyler Arndt
Sent: Tuesday, July 18, 2023 10:15 AM
To: 'Jessica Conroy' <<u>jconroy@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Jessica,

Thank you for providing GRCA's stance on the outlet options provided and requirements for the Site, it is much appreciated.

Based on our review of the information provided, we understand the GRCA's SWM Criteria for the Site are as follows:

- Maintain existing drainage patterns
 This is already being achieved based on the current grading, servicing and SWM design proposed in the FS-SWM Report.
- Achieve an annual surface runoff water balance to Wetland A and Wetland B (feature-based), runoff volumes in the pre-development and post-development condition must be shown in the water balance analysis
 An annual surface runoff water balance to each wetland feature has been achieved based on the current grading, servicing and SWM design proposed in the FS-SWM Report: the water balance analysis already illustrates runoff volumes in the pre-development and post-development condition.
- 3. Achieve an annual infiltration water balance across the Site

Based on the findings of the geotechnical investigation and hydrogeological assessment by Grounded, there is only 3.7 m at the north end of the Site to 0.8m at the middle of the Site to 2.6m at the south end of the Site between the existing grade and the groundwater table across the Site. This shallow groundwater table is not ideal for the installation of a traditional on site infiltration gallery given the required 1m vertical separation between the bottom of the gallery and the seasonal high groundwater table. In addition, the soils above the observed groundwater table were noted to be moist to wet, further indicating the Site may not be suitable for an infiltration gallery. However, this will be reviewed further during detailed design given the majority of the Site is being raised. Other LID methods such as amended topsoil will also be explored during detailed design to help promote infiltration. This has already been noted in the FS-SWM Report.

4. Storm Outlet Option #1 is preferred by the GRCA, adequate erosion control measures at the outlet sized to withstand the regional storm event are required, all uncontrolled flows up to the regional storm event must be contained within the proposed municipal storm sewer and municipal ditch

Runoff from the Site is proposed to be controlled by an outlet control pipe with storage provided in underground storage tanks provided within the Site. Despite on-site control, flows are not proposed to be over controlled to pre-development rates for several reasons, including the minimal allowable flow rate to Wellington Road 7 in the pre-development condition though this is the legal outlet for the Site, proximity to the Grand River (though not directly adjacent) and the fact that the proposed storm outlet along Wellington Road 7 is being funded by the developer. Because of these reasons, this development

is a unique situation and does not set a precedent for future developers with respect to quantity control criteria.

Please review and confirm that the condensed SWM Criteria noted above is accurate and satisfies the requirements of the GRCA.

Thanks, Tyler

From: Jessica Conroy <<u>jconroy@grandriver.ca</u>>
Sent: Tuesday, July 4, 2023 1:16 PM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Tyler,

Thank you for following up and sorry for the delay. Hope you had a nice long weekend too!

We have reviewed this internally and can provide the below comments. Feel free to forward these comments to Triton.

Engineering Comments

See below for a summary of engineering's stance on each option and our requirements for each:

Overview:

- Under existing conditions, it appears that:
 - The majority of the property sheet flows to the existing wetlands adjacent to the property; either to the wetlands north or southwest of the property.
 - A smaller portion of the property sheet flows south towards Middlebrook Road, where it is intercepted by a roadside ditch that conveys flows west to an existing watercourse through GRCA lands.
 - The watercourse through GRCA lands appears to be fed by the wetlands, flows from the residential properties to the west of the watercourse, as well as flows from Wellington Road 7 & a portion of the subject property that are captured in the roadside ditch.

• **REQUIREMENTS**:

- The existing drainage patterns of the site must be maintained.
- Wetlands require quantity control and a feature-based water balance.
- Site water balance will be required.
- All water balances must show pre-development, post-development (uncontrolled), and post-development (controlled) conditions.
- Consultants can refer to Section 6 of TRCA's Stormwater Management Criteria for water balance guidance.
- There are situations where GRCA may allow a property that is directly adjacent to a large river to discharge uncontrolled runoff into the large river in an effort to 'Beat the Peak'.
 - This property is not directly adjacent to the Grand River and, therefore, areas and infrastructure downstream of the property would be impacted by the release of uncontrolled runoff from the developed property.

<u>Outlet Option 1:</u> Proposed Municipal Storm Sewer to Proposed Culvert under Middlebrook Road to Proposed Ditch to Grand River

• This option ties-into municipal infrastructure before discharging to the Grand River.

- GRCA would require adequate erosion control measures at the outlet, sized to withstand the regional storm event. Velocities at the outlet point to the Grand River must be kept low. Consider the use of energy dissipation measures.
- If uncontrolled runoff is being directed through Option 1, as proposed by the consultant, <u>all uncontrolled flows</u> <u>up to the regional storm event must be contained within the proposed municipal storm sewer and municipal</u> <u>ditch</u>.
 - Advisory to the Municipality:
 - As this is the Municipality's infrastructure, it is up to the Municipality if they would like to assume this risk.
 - GRCA advises against the discharge of uncontrolled runoff to the proposed municipal storm sewer system.
 - This would increase the risk of flooding along the road and downstream properties. The municipality would have to size a large storm sewer and ditch to accommodate this development for all storm events up to the regional storm.
 - This sets a precedent for future developments. Developers of nearby properties may also want to tie into the Municipality's storm sewer system and release uncontrolled flows from their site as well. Will this storm sewer system then be sized to accommodate all properties that want to do this? How would this impact future roadway upgrades and developments within the Municipality? Where would this line be drawn?
 - The potential cumulative impact of this and the precedent it sets for future developers and Municipal infrastructure upgrades is of concern.
 - GRCA recommends that quantity control is met for all storms (2-year to 100-year) and safe conveyance of the Regional storm through the site and into the Municipality's infrastructure.

<u>Outlet Option 2:</u> Proposed Municipal Storm Sewer to North Ditch along Middlebrook Road to Existing Watercourse to Grand River (through GRCA property)

- This option ties-into municipal infrastructure, but discharges to a regulated watercourse that flows through GRCA owned lands.
- This option matches existing drainage patterns.
- Uncontrolled post-development runoff to this location is not acceptable.
- Quantity controls will be required for the proposed development to ensure existing drainage conditions are maintained. It must also be ensured that the proposed road upgrades do not increase flows to the existing watercourse. Matching existing conditions would make this option acceptable.
- The proposed development would introduce a larger volume of water to this watercourse over time, therefore, runoff volume control is required as well. If runoff volume control cannot be met, then a stream erosion study by a fluvial geomorphologist will be required.

GRCA Property Comments:

• Option 2 would involve GRCA owned land (Elora Gorge Conservation Area). GRCA Property staff have concerns about Option 2 and further details and discussion/justification would be needed to entertain this option.

I hope this helps.

Thank you, Jessica

Jessica Conroy, MES PI. Resource Planner Grand River Conservation Authority

400 Clyde Road, PO Box 729

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: Tuesday, July 4, 2023 12:08 PM
To: Jessica Conroy <<u>iconroy@grandriver.ca</u>>
Cc: Laura Warner <<u>lwarner@grandriver.ca</u>>; Maria Vogiatzis <<u>mvogiatzis@grandriver.ca</u>>; Lynn Ingram
<<u>LIngram@mte85.com</u>>
Subject: RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Jessica,

I hope all is well with you and that you enjoyed the Canada Day long weekend!

I am reaching out to follow up on the status of the GRCA's review of the Stormwater Management Criteria and Storm Outlet strategy for the proposed development at 350 Wellington Road 7, as it has been quite some time since our meeting on April 5th 2023. The second ZBA/OPA submission for this development was completed on April 27th 2023 and our revised Functional Servicing and Stormwater Management Report incorporated the information provided during and after our meeting for all agencies to review. We just received agency comments back, however, the GRCA comments received appear to be from the first ZBA/OPA submission indicating that the GRCA has no objection to the application (see attached).

Please confirm that this stance holds true for the presented Stormwater Management Criteria and Storm Outlet strategy for the proposed development, both of which have already been found acceptable by Triton Engineering Services Limited pending GRCA's approval/confirmation. As noted previously, it is understood that the design of the external Site works which includes the new storm outlet will be completed by the Township/County's Engineer, Triton. Therefore, the GRCA's preferred storm outlet solution can continue to be worked through with them during detailed design.

Thanks, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | <u>TArndt@mte85.com</u> 520 Bingemans Centre Drive, Kitchener, Ontario N2B 3X9 www.mte85.com | <u>Twitter</u> | <u>LinkedIn</u> | <u>Instagram</u> | <u>Facebook</u>

MTE's structural engineering team is growing again following the acquisition of Milman & Associates. Visit our <u>website</u> to learn more.

Notice: The electronic information provided is confidential and privileged, and may not be used for purposes other than work related to the subject project. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the data contained, either expressed or implied.

From: Jessica Conroy <<u>jconroy@grandriver.ca</u>>
Sent: Wednesday, April 12, 2023 11:46 AM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>
Subject: RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Tyler,

Received, thank you. We will review and get back to you as soon as possible.

Thank you, Jessica

Jessica Conroy, MES PI. Resource Planner Grand River Conservation Authority

400 Clyde Road, PO Box 729 Cambridge, ON N1R 5W6 Office: 519-621-2763 ext. 2230 Toll-free: 1-866-900-4722 Email: jconroy@grandriver.ca www.grandriver.ca | Connect with us on social media

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: Tuesday, April 11, 2023 8:27 AM
To: Jessica Conroy <<u>jconroy@grandriver.ca</u>>; Maria Vogiatzis <<u>mvogiatzis@grandriver.ca</u>>; Laura Warner
<<u>lwarner@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 51060-100_350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hello All,

I hope you enjoyed the long weekend and thanks again for meeting last week to discuss the proposed storm sewer outlet from 350 Wellington Road 7 (WR7) to the Grand River. Below I have provided an overview of the proposed development, stormwater management design, and the proposed storm outlet options to the Grand River which I've attached schematic markups for. Note, I have worked in the points that were discussed during our meeting regarding the storm outlets into this overview.

Proposed Development

The proposed development for the Site is the construction of 34 townhome blocks complete with common drive aisles, surface parking, landscape and amenity areas. To create an inviting urban street-scape, which reflects the character of the Town and enhances the function of the community, it is proposed to urbanize the southbound lane of Wellington Road 7 along the frontage of the Site down to Middlebrook Road/ David Street West Intersection. This work would include filling in the existing roadside ditch and installing a municipal storm sewer in its place, providing catchbasins and concrete curb and gutters to create a proper boulevard which will facilitate a multi-use path and street trees. The installation of the new municipal storm sewer will provide a legal storm outlet for the Site and will be sized to accommodate the proposed flows. It is our understanding that the design of the external Site works will be completed by the Township/County's Engineer, Triton.

Stormwater Management Design

Typically the Stormwater Management (SWM) Design Criteria in the Township of Centre Wellington is post- to predevelopment quantity control for the 2-year through 100-year storm events, implementation of enhanced level water quality controls, and to provide erosion and sediment controls based on the Township's draft Development Manual. However, early on in the project MTE met with Triton to review the challenges and opportunities for the Site in regards to the typical quantity control SWM Design Criteria. Based on that meeting, Triton agreed that given the need to maintain a water balance to the existing GRCA Regulated Wetlands, the lack of runoff toward WR7 in the existing condition and the Site's proximity to the Grand River that post- to pre-development quantity control isn't reasonable to WR7. Therefore, an alternate quantity control SWM Design Criteria is warranted and acceptable since the WR7 storm sewer system is going to be designed to accommodate the flows from the Site.

During our meeting Maria mentioned that the GRCA would have typically expected post- to pre-development quantity control for the Site, however, the paragraph above gives some background on why an alternate quantity control SWM Design Criteria is proposed. Based on past MTE projects, the GRCA typically requests no quantity controls on properties in close proximity to the Grand River as implementing flow controls increases the drawdown time of the stormwater from sites and lags the hydrographs for the various storm events causing more conflict with the river's peak flow. We understand that this Site is not adjacent to the Grand River, however, it is only 490m north of it. With the proposed storm sewer, the concentration time in the pipe from the Site to the Grand River is only a few minutes, meaning the Site should be considered as adjacent to the Grand River and no quantity controls should be required as agreed by Triton.

Based on the comments from the first OPA and ZBA Application, and additional correspondence with Triton, they have requested further review of the proposed storm sewer outlet from Middlebrook Road to the Grand River. Based on our functional review, two storm outlet options appear to be available; 1. Extending the proposed storm sewer further down WR7 where it will daylight just upstream of the Grand River, 2. Directs flows from the proposed storm sewer to the Middlebrook Road roadside ditch which will convey the flow to an existing culvert crossing that outlets to the GRCA owned lands and ultimately to the Grand River, mimicking the existing flow route for runoff from WR7. These options were briefly discussed during our meeting but are discussed in more detail below for the GRCA's review.

Outlet Option #1

As mentioned above, Outlet Option #1 is extending the proposed storm sewer further down WR7 where it will daylight just upstream of the Grand River. The proposed storm sewer would need to cross Middlebrook Road to continue down WR7. The sewer would be located in the southwest boulevard of WR7 from Middlebrook to the WR7 bridge, minor regrading would be required to ensure cover over the storm sewer. The sewer would daylight just before the WR7 bridge where runoff would be conveyed overland for a short distance prior to reaching the Grand River. Erosion control measures would be required as Maria mentioned during our meeting either at the sewer outlet and/or between the outlet and the Grand River. See attached markup for illustration.

Outlet Option #2

As mentioned above, Outlet Option #2 directs flows from the proposed storm sewer to the Middlebrook Road roadside ditch which will convey the flow to an existing culvert crossing that outlets to the GRCA owned lands and ultimately to the Grand River, mimicking the existing flow route for runoff from WR7. The proposed storm sewer would end at the WR7 and Middlebrook Road intersection. The storm sewer would outlet to the existing roadside ditch along the north side of Middlebrook Road, and upgrades to the ditch may be required to ensure the proposed flow can be conveyed. Approximately 150m southwest of the intersection, flow would be conveyed through an existing culvert crossing Middlebrook Road towards the GRCA owned lands. This existing culvert may also need to be upsized to ensure it can convey the proposed flow. Flow would then travel overland across the GRCA owned lands where it would ultimately reach the Grand River. See attached markup for illustration. As discussed on our call, this outlet option will need to be reviewed by GRCA's property management department. It should be noted that this is the existing flow route for runoff for a portion of WR7, Middlebrook Road and other private lands. Given the low point in Middlebrook Road at this location, it is anticipated this flow route will always need to remain to accommodate the existing upstream catchment area.

Please review the information above and provide comment on both storm outlet options noting the design requirements for each and which option would be preferred by the GRCA. I want to reiterate that we are only at a functional/high level design stage at this time and will be resubmitting our OPA and ZBA Application at the end of this month. Therefore, we ask that the GRCA provides a timely response on this matter so we can incorporate the preferred option in our updated Functional Servicing and Stormwater Management (FS-SWM) Report for the Site. We would be happy to meet again if required to discuss the GRCA's review.

Thanks, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | TArndt@mte85.com

From: Jessica Conroy <<u>iconroy@grandriver.ca</u>>
Sent: Friday, March 31, 2023 3:56 PM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>
Subject: RE: 350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Tyler,

Okay sounds good.

GRCA staff involved would be myself and Maria Vogiatzis, Water Resources Engineer (<u>mvogiatzis@grandriver.ca</u>), and Laura Warner (<u>lwarner@grandriver.ca</u>) may also attend.

Thank you and have a great weekend too.

Thank you, Jessica

Jessica Conroy, MES PI. Resource Planner Grand River Conservation Authority

400 Clyde Road, PO Box 729 Cambridge, ON N1R 5W6 Office: 519-621-2763 ext. 2230 Toll-free: 1-866-900-4722 Email: jconroy@grandriver.ca www.grandriver.ca | Connect with us on social media

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: Friday, March 31, 2023 3:49 PM
To: Jessica Conroy <<u>iconroy@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Jessica,

Thank you for providing GRCA staff availability, April 5th 2-3pm works best for us.

This meeting will be virtual, please send us a meeting invite or inform us of what GRCA staff are required and we will send one out.

Have a great weekend, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | TArndt@mte85.com

From: Jessica Conroy <<u>iconroy@grandriver.ca</u>>
Sent: Friday, March 31, 2023 2:54 PM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>
Subject: RE: 350 Wellington Road 7, Township of Elora - Storm Outlet Review

Good afternoon Tyler,

Thank you for your email.

GRCA staff currently have availability at the following dates and times:

- April 5 between 1-3pm;
- April 6 between 9am and 12pm or between 1pm and 4pm;
- April 11 between 2:30 and 4pm;
- April 13 between 1pm and 4pm.

Please let me know what works best. Would this be a virtual meeting?

Thank you, Jessica

Jessica Conroy, MES PI. Resource Planner Grand River Conservation Authority

400 Clyde Road, PO Box 729 Cambridge, ON N1R 5W6 Office: 519-621-2763 ext. 2230 Toll-free: 1-866-900-4722 Email: jconroy@grandriver.ca www.grandriver.ca | Connect with us on social media

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: Wednesday, March 29, 2023 11:29 AM
To: Laura Warner <<u>lwarner@grandriver.ca</u>>; Jessica Conroy <<u>jconroy@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 350 Wellington Road 7, Township of Elora - Storm Outlet Review
Importance: High

Hi Laura,

Thank you for informing us and passing this request on, it is much appreciated.

Welcome to this project Jessica! Please provide the availability of required staff and yourself as soon as possible so we can get a meeting schedule for early to mid-next week.

Thanks, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | <u>TArndt@mte85.com</u>

From: Laura Warner <<u>lwarner@grandriver.ca</u>>
Sent: Tuesday, March 28, 2023 10:20 AM
To: Tyler Arndt <<u>TArndt@mte85.com</u>>; Jessica Conroy <<u>jconroy@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: RE: 350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Tyler,

Jessica Conroy is now our Resource Planner covering the Township of Centre Wellington, so I'm passing your request over to her by way of this email. Jessica will need a bit of time to review the file and engage appropriate staff here, so a virtual meeting next week is more likely.

Jessica, the file is here for context.

Kind regards, Laura

Laura Warner

Assistant Supervisor of Resource Planning Grand River Conservation Authority

400 Clyde Road, PO Box 729 Cambridge, ON N1R 5W6 Office: 519-621-2763 ext. 2231 Toll-free: 1-866-900-4722 Email: <u>lwarner@grandriver.ca</u> www.grandriver.ca | <u>Connect with us on social media</u>

From: Tyler Arndt <<u>TArndt@mte85.com</u>>
Sent: Monday, March 27, 2023 1:42 PM
To: Laura Warner <<u>lwarner@grandriver.ca</u>>
Cc: Lynn Ingram <<u>LIngram@mte85.com</u>>
Subject: 350 Wellington Road 7, Township of Elora - Storm Outlet Review

Hi Laura,

As you may know, MTE is the Civil Consultant for the proposed townhouse development proposed at 350 Wellington Road 7 in the Township of Elora which you provided GRCA comments for dated January 31, 2023. We have no concerns with the comments provided, however, we are hoping we could meet later this week to discuss the Site's storm outlet to the Grand River with the appropriate GRCA staff. Currently the majority of the Site drains to a GRCA regulated wetland southwest of the Site which we will be providing a surface runoff water balance to in the post development condition. In addition to maintaining the flows to the wetland, a new legal storm outlet for the Site will be established to Wellington Road 7 as part of the urbanization of Wellington Road 7 from the Site down to the intersection of Wellington Road 7 and Middlebrook Road. The new storm outlet beyond this intersection to the Grand River is what we wish to discuss with the GRCA, see attached markup for reference.

Please let us know staffs availability for this week/early next week and we will send out a meeting invite accordingly.

Thanks, Tyler

Tyler Arndt, E.I.T. | Designer MTE Consultants Inc. T: 519-743-6500 x1386 | <u>TArndt@mte85.com</u> 520 Bingemans Centre Drive, Kitchener, Ontario N2B 3X9 www.mte85.com | <u>Twitter</u> | <u>LinkedIn</u> | <u>Instagram</u> | <u>Facebook</u>

Notice: The electronic information provided is confidential and privileged, and may not be used for purposes other than work related to the subject project. Redistribution or copies to others made without written permission from MTE Consultants Inc. is strictly prohibited. MTE assumes no liability or responsibility, and makes no guarantee or warranty with respect to the data contained, either expressed or implied.

Map Centre (UTM NAD83 z17): 545,141.60 4,836,833.14

Scale: 7.879

Wellington Rd

Elora tubing launch

Elora Gorge Hole in the Rock

Image © 2023 Maxar Technologies

Middlebrook F

Erosion control measures to be implemented at the storm sewer outlet and/or between the outlet

and the Grand River.

Approximate flow route from the storm sewer down to the Grand River based on review

of the GRCA Web Map.

Elora Gorge Trail

2 1985

New Storm Sewer from the North end of the Site to WR7 & Middlebrook Road Intersection.

> **Proposed Storm** Sewer is extended from Middlebrook Road to the WR7 Bridge as shown. Minor boulevard regarding will be required to get cover over the sewer.

> > STORM OUTLET **OPTION #1 MARKUP** 2023-04-06

mun

Elora River valley lookout (walk on...

Google Earth

David s

Imagery Date: 3/28/2022 17 T 545262.46 m E 4836806.09 m N elev 1275 ft eye alt 2921 ft 🕻

Ex. Culvert Crossing Middlebrook Road (Approx Location), may need to be upsized to convey the flow.

Flow from new strom sewer will be conveyed to the existing roadside ditch along Middlebrook Road as shown. Upgrades may be required to ensure the ditch can convey the flow.

Middleurook Re

Approximate flow routes from the culvert to the Grand River over GRCA Lands based on review of the GRCA Web Map.

Elora Gorge Trail

Elora tubing launch

Elora Gorge Hole in the Rock

Image © 2023 Maxar Technologies

Wellington Rd

New Storm Sewer from the North end of the Site to WR7 & Middlebrook Road Intersection.

David s

STORM OUTLET **OPTION #2 MARKUP** 2023-04-06

mm

Elora River valley lookout (walk on...

Google Earth

Imagery Date: 3/28/2022 17 T 545262.46 m E 4836806.09 m N elev 1275 ft eye alt 2921 ft 🕻

SWM Criteria Brief

Project Name:	350 Wellington Road 7	MTE File No.:	51060-100
То:	Ray Kirtz & Dustin Lyttle Triton Engineering Services Limited	Date:	September 12, 2022
cc:	Bob & Colleen Forrest, We Merchandise Space Inc. Eldon Theodore, MHBC Planning Limited	From:	Tyler Arndt, E.I.T. Lynn Ingram, P.Eng.

RE: SWM Criteria Brief 350 Wellington Road 7, Elora ON

MTE Consultants Inc. has been retained to complete the preliminary grading, servicing, and stormwater management design for the proposed townhouse development, to be constructed at 350 Wellington Road 7 (herein referred to as 'the Site') in the Town of Elora, located in the Township of Centre Wellington.

The overall Site comprises of approximately 4.46ha of agricultural land and is located on Wellington Road 7 between Wellington Road 18/Woolwich Street West and Middlebrook Road/David Street West, approximately 490m north of the Grand River. The Site is bounded to the east by Wellington Road 7 and bounded to the north, south and west by existing agricultural land. Existing residential properties and the Elora municipal cemetery are located on the other side of Wellington Road 7, fronting the Site. In addition, there are four Grand River Conservation Authority (GRCA) regulated wetlands adjacent to the Site; three to the northwest and one to the southwest. The southwest wetland regulation limit extends into the southwest portion of the Site. Refer to the appended GRCA Web-Map figure for illustration of the exact Site location, surrounding wetlands and regulation limits.

The proposed concept for the Site is the construction of approximately 35 townhouse blocks complete with common drive aisles, surface parking, landscape and amenity areas. The development will create approximately 272 townhouse units varying from conventional, back to backs and double front live/work style units. In order to service the development, the existing municipal sanitary sewer and watermain will be extended from the Wellington Road 7 and David Street West intersection to the Site. The proposed storm servicing strategy is discussed in a following section in this memo.

The purpose of this technical memorandum is to review the Township's general requirements for stormwater management criteria, the Site specific constraints and to propose practical stormwater management design criteria for the subject Site for approval by the appropriate reviewing agencies.

Stormwater Management

General Stormwater Management Requirements

Based on the Township of Centre Wellington's draft Development Manual, and previous email correspondence with Triton Engineering Services Limited, general stormwater management design criteria is typically as follows:

- i) Attenuation of the post-development peak flows for the 2-year through 100-year storm events to the pre-development (existing) peak flows;
- ii) Implementation of water quality controls; and,
- iii) Provide erosion and sediment controls.

We agree that the water quality control and erosion control criteria remain valid for this Site. However, it is our understanding that the Township's typical water quantity control requirement to attenuate post-development peak flows to pre-development (existing) peak flows is typically required in more urban/developed areas to mitigate capacity concerns with existing downstream municipal infrastructure. Given the rural cross-section of Wellington Road 7 (i.e., road side ditches), the Site's proximity to the Grand River and Site specific stormwater management constraints discussed below, we believe a deviation from the typical water quantity control requirement is warranted.

Existing Site Conditions/Constraints

To understand the Site constraints associated with the aforementioned wetlands, MTE has been working with Michalski Nielsen Associates Limited who has been retained to complete the Environmental Impact Assessment (EIS) for the Site. Through discussions regarding the natural functions of Wetland A and B within the area, it was determined that is necessary to maintain an annual surface runoff water balance to Wetland A and B to mimic the existing sheet flow from the Site in the post-development condition.

In the existing condition, the Site drains via broad sheet flow to four main drainage paths based on the existing contours; to the southwest towards Wetland A (Catchment 101), to the southeast towards the neighbouring agricultural lands (Catchment 102), to the north towards Wellington Road 7 (Catchment 103) and to the northwest towards Wetland B (Catchment 104). Refer to appended Figure 1.0 for illustration of the limits of the pre-development catchment areas directed to each drainage path. Based on these catchment areas, only around 7% of the Site currently drains to the Wellington Road 7 right-of-way to the north, 8% of the Site currently drains to the neighbouring agricultural lands to the southeast, while 18% and 67% (totaling to 85%) of the Site currently drains to Wetland B and A, respectively. Therefore, if the Township's typical water quantity control criterion was required for this Site, no flow would be allowed to drain to Wellington Road 7 towards the southeast (i.e., to the Grand River) and the majority of flow would need to be directed across the neighbouring property to the adjacent wetlands. Understanding the importance of establishing a legal outlet for green field developments such as this, the typical water quantity control criterion cannot be achieved.

Proposed Stormwater Management Strategy

Based on the existing Site conditions and constraints mentioned above, we propose the stormwater management design criteria for the Site be as follows:

- i) Establish a legal outlet(s) for the Site;
- ii) Maintain an annual surface runoff water balance to Wetland A and Wetland B;
- iii) Attenuation of the post-development peak flows for the 2-year through 100-year storm events to the allowable flow rate using a C value of 0.75;
- iv) Implementation of water quality controls; and,
- v) Provide erosion and sediment controls.

A brief description has been provided below on how each criteria is anticipated to be met, and in some cases, justification for the proposed criteria has been provided.

Legal Outlet

In the existing condition, the majority of the runoff from the Site is directed across the neighbouring property via broad sheet flow to Wetland A and B. Generally, there is no right of drainage for surface water. Therefore, the only legal outlet for the Site in the existing condition is to the municipal right-of-way (Wellington Road 7).

In the post-development condition, it is proposed that the Site's private storm sewer system will outlet to the existing roadside ditch within the Wellington Road 7 right-of-way at the southeast corner of the Site. Through the Site grading design, the major overland flow route will also be directed to the Wellington Road 7 right-of-way. However, given the need to maintain a surface runoff water balance to Wetland A and B, an easement is currently being pursued with the neighbouring property owner to legally allow surface drainage across the adjacent property to these wetlands.

It should be noted that even if an easement is obtained, the primary legal outlet for the Site should still be to Wellington Road 7.

Water Balance

An annual surface runoff water balance to Wetland A and Wetland B will be achieved in the post-development condition by directing runoff from rooftop and landscape areas adjacent the west property line to the neighbouring property. From there, runoff will continue to sheet flow across the neighbouring property and into each wetland as it does in the existing condition. A preliminary annual surface runoff water balance analysis was completed for each wetland and the required catchment area to be directed to Wetland A and B is illustrated on the appended post-development catchment areas Figure 2.0 (Catchment 204 & 205, respectively).

It should be noted that being able to achieve a surface runoff water balance to Wetland A and B is conditional on obtaining an easement to allow surface drainage across the neighbouring property.

Water Quantity Control

In the pre-development condition, no surface runoff from the Site is directed toward the southeast to Wellington Road 7. However, it is imperative that an allowable flow rate be established to Wellington Road 7, south of the existing high point in the road, to support the appropriate legal outlet location for the Site.

Currently Wellington Road 7 has a rural cross-section with approximately four existing driveway/road crossing culverts between the Site and the Grand River. Given the limited infrastructure constraints, we believe an appropriate runoff coefficient should be utilized based on the proposed Site use, rather than the pre-development (existing) peak flows. Based on past experience, and the Region of Waterloo Design Guidelines and Supplemental Specifications for Municipal Services 2022 as a reference, typical runoff coefficients for residential row dwellings/townhouse blocks vary from 0.50 to 0.80. Considering the proximity to the Grand River, we believe a runoff coefficient of 0.75 is appropriate and would help allow the peak flow from the Site to occur in advance of the peak flow from the upstream drainage area. We understand that due to the increased flow to Wellington Road, road side ditch improvements and upsizing of any existing culverts may be required. If necessary, this could be completed during the necessary sanitary sewer and watermain extensions along Wellington Road 7 from the David Street West intersection to the Site. In the future when Wellington Road 7 is urbanized, the required storm sewers can be sized accordingly.

On-site quantity control requirements will be met through the use of an on-line orifice plate on the controlled catchment area (Catchment 201). Storage volume for the orifice plate will be provided via surface ponding in the drive aisles and parking areas, along with the implementation of underground storage tanks as required.

Water Quality Control

The quality control requirement will be met for the controlled catchment area (Catchment 201) through the installation of an oil-grit separator (OGS) unit on the private storm sewer system before outletting to the municipal ditch. Runoff from the frontage of the property and towards the wetlands will be from rooftop and landscape areas which are considered "clean", therefore no quality controls are required for those catchment areas (Catchment 202, 203, 204 and 205).

Erosion and Sediment Control

Precautions will need to be taken during construction to limit erosion and sedimentation. Typically, the following measures are recommended during construction for erosion and sedimentation control:

- i) Erosion and sedimentation facilities are to be installed prior to any area grading operations;
- ii) All erosion control measures are to be inspected and monitored by the contractor and repairs are to be completed as required;
- All materials and equipment used for the purpose of site preparation and project completion should be operated and stored in a manner that prevents any deleterious substance from leaving the site;
- iv) Stripping and strategic placement of topsoil stockpiles. Placement of sediment control fencing around all stockpile areas;
- v) Re-vegetation of completed areas as soon as possible after construction, including those areas not slated for construction, within 60 days of rough grading; and,
- vi) To minimize the amount of mud being tracked onto the roadway, a mud mat should be installed at the primary construction entrance.

The exact erosion and sediment control measures will be determined during detailed design.

We trust the above provides rationale as to why the Township's general stormwater management design water quantity control criteria is not feasible for the subject Site. We respectfully request that the proposed alternate stormwater management criteria be reviewed and approved by the appropriate reviewing agencies. A functional servicing and SWM report and functional design drawings will be prepared and submitted once the stormwater management criteria is agreed upon.

Yours truly,

MTE Consultants Inc.

Figh Dundt

they

Tyler Arndt, E.I.T. Designer 519-743-6500 ext.1386 tarndt@mte85.com

TMA:dlb Encl. M:\51060\100\Reports\SWM Criteria Brief\SWM Criteria Brief.docx

Lynn Ingram, P.Eng. Design Engineer 519-743-6500 ext.1381 lingram@mte85.com

This map is not to be used for navigation 2020 Ortho (ON)

Scale: 8.174

P:\P\51060\100\51060-100-F1.0.dwg

September 7, 2022 9:23 a.m. Plotted By: NDalal

Surface Runoff Water Balance Analysis

350 Wellington Road 7 WATER BALANCE (SURFACE RUNOFF) ANALYSIS Elora, Ontario

Project Number:	51060-100
Date:	August 4, 2023
Design By:	ТМА
Checked By:	LEI
File:	Q:\51060\100\Preliminary Design\Water Demand\51060-100_Site Water Demand & Fire Flow Analysis.xlsx

Hydrologic Cycle Component Values

Annual Precipitation = 924mm

	Pre-Development (Flat Lands - Moderately Rooted Crops)	Post-Development (Flat Lands - Urban Lawns)	Roof Areas		
Fine Sandy Loam	579 mm Evapo-Transpiration	564 mm Evapo-Transpiration	214 mm Evapo-Transpiration		
	104 mm Runoff	126 mm Runoff	710 mm Net Runoff from roof (Based on 30mm)		
	242 mm Infiltration	234 mm Infiltration	0 mm Infiltration		

SOUTHWEST WETLAND A - SURFACE RUNOFF

	Pr	e-developmen	t	Post-development						
	Area				Pervious			Impervious		
Location	Draining to Location	Runoff Rate Runoff Volume		Area Draining to Location	Runoff Rate	Runoff Volume	Area Draining to Location	Runoff Rate	Runoff Volume	Comments
	ha	mm/yr/m²	m³/yr	ha	mm/yr/m²	m³/yr	ha	mm/yr/m²	m³/yr	
Pre-Development (101)										
Landscape Area	2.981	104	3100							
Post-Development (204)										
Roof Area							0.372	710	2641	
Landscape Area				0.391	126	493				
Total	2.981	104	3100	0.391	126	493	0.372	710	2641	
						Total Pos	st-developmer	nt Runoff	3134	
						Ne	t Gain of Run	off	34	

350 Wellington Road 7 WATER BALANCE (SURFACE RUNOFF) ANALYSIS Elora, Ontario

Project Number:	51060-100
Date:	August 4, 2023
Design By:	ТМА
Checked By:	LEI
File:	Q:\51060\100\Preliminary Design\Water Demand\51060-100_Site Water Demand & Fire Flow Analysis.xlsx

Hydrologic Cycle Component Values

Annual Precipitation = 924mm

	Pre-Development (Flat Lands - Moderately Rooted Crops)	Post-Development (Flat Lands - Urban Lawns)	Roof Areas
Fine Sandy Loam	579 mm Evapo-Transpiration	564 mm Evapo-Transpiration	214 mm Evapo-Transpiration
	104 mm Runoff	126 mm Runoff	710 mm Net Runoff from roof (Based on 30mm)
	242 mm Infiltration	234 mm Infiltration	0 mm Infiltration

NORTHWEST WETLAND B - SURFACE RUNOFF

	Pr	e-development		Post-development						
	Area		Runoff Volume		Pervious			Impervious		
Location	Draining to Location	Runoff Rate		Area Draining to Location	Runoff Rate	Runoff Volume	Area Draining to Location	Runoff Rate	Runoff Volume	Comments
	ha	mm/yr/m²	m³/yr	ha	mm/yr/m²	m³/yr	ha	mm/yr/m²	m³/yr	
Pre-Development (104)										
Landscape Area	0.812	104	844							
Post-Development (205)										
Roof Area							0.100	710	710	
Landscape Area				0.160	126	202				
Total	0.812	104	844	0.160	126	202	0.100	710	710	
						Total Pos	st-developmer	nt Runoff	912	
						Ne	t Gain of Run	off	67	

Storm Tank Sizing Sheets & MIDUSS Outputs

User Inputs

<u>Results</u>

Chamber Model:	MC-3500	<u>System Volume an</u>	<u>d Bed Size</u>		
Outlet Control Structure:	Yes	Installed Stevers Volume	COE 12 cubic motors		
Project Name:	350 Wellington Road	installed storage volume.	605.43 Cubic meters.		
	7	Storage Volume Per Chamber:	3.12 cubic meters.		
Engineer:	Tyler Arndt	Number Of Chambers Required:	110		
Project Location:	Ontario	Number Of End Caps Required:	22		
Measurement Type:	Metric	Chamber Rows:	11		
Required Storage Volume:	1000.01 cubic me-	Maximum Length:	24.86 m.		
	ters.	Maximum Width:	23.84 m.		
Stone Porosity:	40%	Approx. Bed Size Required:	588.27 square me-		
Stone Foundation Depth:	229 mm.		ters.		
Stone Above Chambers:	305 mm.	<u>System Compo</u>	onents		
Average Cover Over Chambers:	458 mm.	Amount Of Stone Required:	635 cubic meters		
Design Constraint Dimensions:	(24.00 m. x 24.00 m.)	Volume Of Excavation (Not Including 987 cubic meters Fill): Total Non-woven Geotextile Required:2520 square meters			
		Woven Geotextile Required (exclud Isolator Row):	ing 98 square meters		
		Woven Geotextile Required (Isolato Row):	or 74 square meters		

Impervious Liner notes:

Technical Note 6.50 : Thermoplastic Liners for Detention Systems

The impervious liner quantity shown is only an estimate. ADS does not provide or design impervious liners. Please contact a liner manufacturer for a final estimate.

Total Woven Geotextile Required:

Impervious Liner Required:

172 square meters

907 square meters

MINMUM COVER TO BOTTOM OF FLBKIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

User Inputs

<u>Results</u>

Chamber Model:	MC-3500	<u>System Volume an</u>	<u>d Bed Size</u>		
Outlet Control Structure:	Yes	Installed Storage Velume	19206 subis motors		
Project Name:	350 Wellington Road 7	Storage Volume Per Chamber:	3.12 cubic meters.		
Engineer:	Tyler Arndt	Number Of Chambers Required:	88		
Project Location:	Ontario	Number Of End Caps Required:	16		
Measurement Type:	Metric	Chamber Rows:	8		
Required Storage Volume:	1000.01 cubic me-	Maximum Length:	27.05 m.		
	ters.	Maximum Width:	17.51 m.		
Stone Porosity:	40%	Approx. Bed Size Required:	469.31 square me-		
Stone Foundation Depth:	229 mm.		ters.		
Stone Above Chambers:	305 mm.	<u>System Compo</u>	onents		
Average Cover Over Chambers:	458 mm.	Amount Of Stone Required:	507 cubic meters		
Design Constraint Dimensions:	(18.01 m. x 27.50 m.)	Volume Of Excavation (Not Including 787 cubic meters Fill):			
		Total Non-woven Geotextile Requir	ed:2059 square meters		
		Woven Geotextile Required (exclud Isolator Row):	ing 56 square meters		
		Woven Geotextile Required (Isolato Row):	or 81 square meters		

Impervious Liner notes:

Technical Note 6.50 : Thermoplastic Liners for Detention Systems

The impervious liner quantity shown is only an estimate. ADS does not provide or design impervious liners. Please contact a liner manufacturer for a final estimate.

Total Woven Geotextile Required:

Impervious Liner Required:

137 square meters

748 square meters

MINMUM COVER TO BOTTOM OF FLBKIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

Pre-Development

"			MIDUSS Output				>"
n			MIDUSS version		V	ersion 2.25	rev. 473"
n			MIDUSS created		Sun	dav. Februa	rv 7. 2010"
		10	Units used:				ie MFTRTC"
п			loh folder:	0.12	1060\100\Pr	eliminary D	esign\SWM\"
п			500 1010011	Q. (J	1000 (100 (11)		SWM Momo"
п			Output filonomo.			2//0	
			output filename:			2YK -	PRE D.OUL
			Licensee name:				A"
			Company	_			
"			Date & Time last us	ed:	9/:	12/2022 at 9	9:16:29 AM"
"	31	T.	IME PARAMETERS"				
"		5.000	Time Step"				
"		180.000	Max. Storm length"				
"		1500.000	Max. Hydrograph"				
п	32	S	TORM Chicago storm"				
п		1	Chicago storm"				
п		743,000	Coefficient A"				
п		6,000	Constant B"				
п		0.000	Exponent C"				
п		0.755	Exponence Enaction P"				
		100,000					
		180.000					
		1.000	lime step multiplie	r"			
		Ma	aximum intensity	109.3	74 mm/hr		
"		Te	otal depth	34.2	59 mm"		
"		6	002hyd Hydrograph	extension	used in thi	s file"	
"	33	C	ATCHMENT 101"				
"		1	Triangular SCS"				
n		1	Equal length"				
п		1	SCS method"				
п		101	To Southwest Wetland	d A"			
п		a aaa	% Tmpervious"				
п		2 981	Total Area"				
п		2.501	Flow longth"				
		200.000	Piow iengun				
		3.500	Overland Stope				
		2.981	Pervious Area				
		200.000	Pervious length"				
		3.500	Pervious slope"				
"		0.000	Impervious Area"				
"		200.000	Impervious length"				
"		3.500	Impervious slope"				
"		0.250	Pervious Manning 'n				
п		75.000	Pervious SCS Curve	No."			
n		0.176	Pervious Runoff coe	fficient"			
п		0.100	Pervious Ia/S coeff	icient"			
п		8 467	Pervious Initial ab	straction"			
п		0.407	Tmpopyious Manning	'n'"			
		0.010					
		98.000		e NU.			
		0.000	Impervious Runott Co	oetticient			
		0.100	Impervious Ia/S coe	tticient"			
		0.518	Impervious Initial	abstraction			
"			0.022 0.00	0.000	0.000	c.m/sec"	
"		C	atchment 101	Pervious	Impervious	Total Area	
"		S	urface Area	2.981	0.000	2.981	hectare"
"		T	ime of concentration	69.388	5.831	69.387	minutes"
"		T	ime to Centroid	187.782	96.786	187.782	minutes"
"		R	ainfall depth	34.259	34.259	34.259	mm"
		R	ainfall volume	1021.25	0.00	1021.25	C.m"
		D	ainfall losses	28 227	5 1/0	2021.25	~ • ···· mm "
п			unoff donth	20.237 6 071	20 110	20.237 6 071	
		K		0.021	22.112	0.021	11111

		Ru	unoff volume	179.	49	0.00	179.49	c.m"
		Ru	unoff coefficien	t 0.17	6	0.000	0.176	
		Ma	aximum flow	0.02	2	0.000	0.022	c.m/sec"
	40	H	YDROGRAPH Add Ru	noff "				
		4	Add Runoff "					
			0.022	0.022	0.000	0.000"		
	40	H	/DROGRAPH Copy t	o Outflow"				
		8	Copy to Outflo	w"				
			0.022	0.022	0.022	0.000"		
	40	H	/DROGRAPH Comb	ine 1"				
		6	Combine "					
		1	Node #"					
		M	IOCAL SICE		0 02	2 - c m/c		
		Ma Live	ydnognanh yolume		170 /19	2 C.III/St		
		l l l	a azz	0 022	a azz	0 022"		
	10	н	VDROGRAPH Start	- New Trib	utary"	0.022		
	-0	2	Start - New Tr	ibutary"	acary			
		-	0.022	0.000	0.022	0.022"		
	33	CA	ATCHMENT 102"	0.000	01022	01022		
		1	Triangular SCS					
		1	Equal length"					
		1	SCS method"					
		102	To the South"					
		0.000	% Impervious"					
"		0.344	Total Area"					
		100.000	Flow length"					
		2.000	Overland Slope	, II				
		0.344	Pervious Area"					
		100.000	Pervious lengt	h"				
		2.000	Pervious slope					
		0.000	Impervious Are	a"				
		100.000	Impervious len	gth"				
		2.000	Impervious sio	pe"				
		0.250	Pervious Manni	ng n upvo No "				
		0 176	Pervious SCS C	urve NO.	ont"			
		0.170	Pervious Runor	coefficien	enc + "			
		8 467	Pervious Initi	al abstrac	tion"			
		0.015	Impervious Man	ning 'n'"	CION			
		98.000	Impervious SCS	Curve No.				
		0.000	Impervious Run	off coeffi	cient"			
		0.100	Impervious Ia/	S coeffici	ent"			
		0.518	Impervious Ini	tial abstr	action"			
			0.003	0.000	0.022	0.022 0	c.m/sec"	
		Ca	atchment 102	Perv	ious	Impervious	Total Area	"
		Su	urface Area	0.34	4	0.000	0.344	hectare"
		T	ime of concentra	tion 54.1	47	4.550	54.147	minutes"
		T	ime to Centroid	169.	233	94.883	169.232	minutes"
		Ra	ainfall depth	34.2	59	34.259	34.259	mm"
		Ra	ainfall volume	117.	85	0.00	117.85	c.m"
		Ra	aintall losses	28.2	38	5.281	28.238	mm"
		Ru	unott depth	6.02	1	28.978	6.021	mm"
		Ru	unott volume	+ 20.7	L C	0.00	20./1	C.M"
		RU	JUOTT COETTICIEN	τ 0.1/	ט כ	0.000	0.1/0	c m/coc"
	10	Ma Lin	AVDBUCDVDD V99 D.	0.00 noff "	2	0.000	2003	c.m/sec
	40	л И	Add Pupoff "					
		4		0.003	0.022	0.077"		
			0.000			0.022		

HYDROGRAPH Copy to Outflow" 40 ... Copy to Outflow" 8 0.003 0.003 0.003 0.022" п 1" 40 HYDROGRAPH Combine ... Combine " 6 Node #" 1 ... Total Site" ... Maximum flow 0.025 c.m/sec" c.m" ... 200.201 Hydrograph volume ... 0.003 0.025" 0.003 0.003 н 40 HYDROGRAPH Start - New Tributary" н 2 Start - New Tributary" ... 0.003 0.025" 0.003 0.000 33 CATCHMENT 103" ... Triangular SCS" 1 ... 1 Equal length" ... 1 SCS method" ... 103 To the north ROW" 0.000 % Impervious" 0.321 Total Area" 50.000 Flow length" 1.500 Overland Slope" ... Pervious Area" 0.321 ... 50.000 Pervious length" ... 1.500 Pervious slope" ... 0.000 Impervious Area" ... 50.000 Impervious length" Impervious slope" 1.500 0.250 Pervious Manning 'n'" п 75.000 Pervious SCS Curve No." ... 0.176 Pervious Runoff coefficient" н Pervious Ia/S coefficient" 0.100 ... Pervious Initial abstraction" 8.467 ... 0.015 Impervious Manning 'n'" Impervious SCS Curve No." 98.000 ... 0.000 Impervious Runoff coefficient" Impervious Ia/S coefficient" 0.100 0.518 Impervious Initial abstraction" ... 0.004 0.000 0.003 0.025 c.m/sec" Impervious Total Area " ... Catchment 103 Pervious Surface Area 0.000 0.321 hectare" 0.321 Time of concentration 38.944 3.273 38.944 minutes" Time to Centroid 92.946 150.729 150.729 minutes" mm" Rainfall depth 34.259 34.259 34.259 Rainfall volume 109.97 0.00 109.97 c.m" mm" Rainfall losses 28.237 5.510 28.237 mm" Runoff depth 6.021 28.748 6.021 н Runoff volume 0.00 19.33 19.33 c.m" ... н Runoff coefficient 0.176 0.000 0.176 Maximum flow 0.004 0.000 0.004 c.m/sec" n HYDROGRAPH Add Runoff " 40 ... Add Runoff " 4 ... 0.003 0.004 0.004 0.025" ... HYDROGRAPH Copy to Outflow" 40 п Copy to Outflow" 8 0.004 0.004 0.004 0.025" 1" 40 **HYDROGRAPH** Combine ... Combine " 6 н 1 Node #"

ı		Total Site"							
I	Max	kimum flow			0.0	28	c.m/se	ec"	
I	Ну	drograph volume	2		219.52	29	c.m"		
	-	0.004	0.00	4	0.004		0.028"		
' 40	HYI	DROGRAPH Start	- New	Tribu	utary"				
I	2	Start - New Tr	ributa	ry"					
1		0.004	0.00	0	0.004		0.028"		
' 33	CA	TCHMENT 104"							
I	1	Triangular SCS	5						
	1	Equal length"							
	1	SCS method"							
	104	To the NW Wet	and B						
· (0.000	% Impervious"							
ب ۱	0.812	Iotal Area							
, Ot	0.000	Flow length	, II						
' (2.500 0 912	Dervious Area'	:						
י אני	0.012	Pervious lengt	-h"						
	2 500	Pervious slone	-11 \"						
' <i>'</i>	2.300 A AAA	Impervious Are	•a"						
' 80	0.000	Impervious ler	.a ngth"						
'	2.500	Impervious slo	bne"						
' (0.250	Pervious Manni	ng 'n						
' 75	5.000	Pervious SCS (Curve	No."					
' (0.176	Pervious Runof	f coe	fficie	ent"				
' (0.100	Pervious Ia/S	coeff	icient	t"				
' 8	8.467	Pervious Initi	al ab	stract	tion"				
' (0.015	Impervious Mar	ning	'n'"					
' 98	8.000	Impervious SCS	5 Curv	e No.'	п				
' (0.000	Impervious Rur	noff c	oeffi	cient"				
' (0.100	Impervious Ia/	'S coe	ffici	ent"				
' (0.518	Impervious Ini	tial	abstra	action				
I		0.009	0.00	0	0.004		0.028	c.m/sec"	
	Ca	tchment 104		Perv:	ious	Impe	rvious	Total Area	
	Sui	rface Area		0.81	2	0.00	00	0.812	hectare"
	111	ne of concentra	ation	44.29	95	3.72	2	44.295	minutes"
	11	me to Centroid		15/.2	240	93.6	96	157.240	minutes"
1	Ka:	infall depth		34.2	59 10	34.2	.59	34.259	mm c m"
1	Rd. Poi	infall loccoc		2/8.	18	0.00 E 61	0	2/8.18	
ı	Nd. Duu	noff donth		20.2	29	2.01	.0 ://1	20.239	""""
	Rui	off volume		18 89	2	20.0	941)	18 88	
ı	Rui	off coefficier	nt	9.17	5	0.00	, 19	9,176	"
ı	Max	kimum flow	. c	0.009	9	0.00	0	0.009	c.m/sec"
' 40	HYI	DROGRAPH Add Ru	noff	"	-	0.00		01005	e t , 500
	4	Add Runoff "							
ı		0.009	0.00	9	0.004		0.028"		
40	HYI	DROGRAPH Copy t	o Out	flow"					
•	8	Copy to Outflo	w"						
I		0.009	0.00	9	0.009		0.028"		
' 40	HYI	DROGRAPH Comb	oine	1"					
I	6	Combine "							
I	1	Node #"							
1		Total Site"							
	Max	kimum flow			0.0	36	c.m/se	ec"	
	Hyd	drograph volume	2	~	268.40	98	c.m"		
		0.009	0.00	9	0.009		0.036"		
. 38	ST	ART/RE-START TO	TALS	104" 					
-	3	KUNOTT LOTALS	on FX	11"					

•	Total Catchment area	4.458	hectare"
I	Total Impervious area	0.000	hectare"
I	Total % impervious	0.000"	
' 19	EXIT"		

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			SWM Memo"
"		Output filename:	5YR - PRE B.out"
"		Licensee name:	Α"
"		Company	п
"		Date & Time last used:	9/12/2022 at 9:18:02 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	1593.000	Coefficient A"	
"	11.000	Constant B"	
"	0.879	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	М	aximum intensity	139.288 mm/hr"
"	Т	otal depth	47.265 mm"
"	6	005hyd Hydrograph ext	ension used in this file"
"	33 C	ATCHMENT 101"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	101	To Southwest Wetland A"	
"	0.000	% Impervious"	
"	2.981	Total Area"	
"	200.000	Flow length"	
"	3.500	Overland Slope"	
"	2.981	Pervious Area"	
"	200.000	Pervious length"	
"	3.500	Pervious slope"	
"	0.000	Impervious Area"	
"	200.000	Impervious length"	
"	3.500	Impervious slope"	
"	0.250	Pervious Manning 'n'"	
"	75.000	Pervious SCS Curve No."	
"	0.258	Pervious Runoff coeffic	ient"
"	0.100	Pervious Ia/S coefficie	nt"
"	8.467	Pervious Initial abstra	ction"
"	0.015	Impervious Manning 'n'"	
"	98.000	Impervious SCS Curve No	."
"	0.000	Impervious Runoff coeff	icient"
"	0.100	Impervious Ia/S coeffic	ient"
"	0.518	Impervious Initial abst	raction"

"	e	0.064	0.000)	0.000	0.000 0	c.m/sec"	
"	Catchment	: 101		Pervi	ious	Impervious	Total Area	
"	Surface A	Area		2.981	L	0.000	2.981	hectare"
"	Time of c	concentrat	ion	50.48	37	5.226	50.487	minutes"
"	Time to C	Centroid		160.5	521	93.566	160.521	minutes"
"	Rainfall	depth		47.26	55	47.265	47.265	mm"
"	Rainfall	volume		1408.	96	0.00	1408.96	c.m"
"	Rainfall	losses		35.07	78	5.507	35.078	mm"
"	Runoff de	epth		12.18	37	41.758	12.187	mm"
"	Runoff vo	olume		363.2	29	0.00	363.29	c.m"
"	Runoff co	oefficient		0.258	3	0.000	0.258	
"	Maximum f	low		0.064	1	0.000	0.064	c.m/sec"
"	40 HYDROGRAP	PH Add Run	off "					,
"	4 Add Ru	unoff "						
"	e	0.064	0.064	Ļ	0.000	0.000"		
п	40 HYDROGRAP	PH Copy to	Outf	low"				
"	8 Copy t	o Outflow	"					
	e copy c	0.064	0.064	L	0.064	0.000"		
"	40 HYDROGRAP	PH Combi	ne	1"				
"	6 Combin	ne"		-				
	1 Node #	ŧ"						
	Total							
	Maximum f	Flow			0.06	54 c.m/se	<u>م</u> د"	
	Hydrogran	h volume			363.28	39 c.m"		
	nyar ograp	064	0 064	L	0 064	0 064"		
	40 HYDROGRAP	PH Start -	New	Tribu	itarv"	0.004		
	2 Start	- New Tri	hutar	•v"	icul y			
	2 Start	0.064	0.000	y)	0.064	0.064"		
п		102"	0.000	•	0.004	0.004		
	1 Triang	milar SCS"						
п	1 Foual	length"						
		thod"						
	102 To the	South"						
	0.000 % Tmpe	rvious"						
	0.344 Total	Area"						
	100.000 Flow 1	ength"						
	2.000 Overla	and Slone"						
	0 344 Pervic	us Area"						
	100.000 Pervio	jus length	п					
	2.000 Pervic	us slone"	I					
п	0 000 Tmperv	vious Area						
	100 000 Imperv	ious leng	th"					
	2 000 Tmperv	inus elon	ر دار ام					
	0.250 Dervio	us Mannin		п				
	75 000 Denvio		5 " 101/0 N	lo "				
	0 258 Denvio	us Runoff		iu. Ificic	nt"			
	0.250 Fervio	ras Runoll rac Ta/C c		cion+	-"			
	8 467 Donvio	us Initia	l abo	theret	- -ion"			
	0.407 PERVIC	vious Mann	ing '	n'"	1011			
		ious ridilli	CURVA					
	Jo. 000 Tuberv	1002 SCS	Curve	NU.				

"	0.000	Impervious	Runoff co	pefficient"			
"	0.100	Impervious	Ia/S coet	fficient"			
"	0.518	Impervious	Initial a	abstraction'			
"		0.009	0.00	0.064	0.064	c.m/sec"	
"	C	Catchment 102		Pervious	Impervious	Total Area	
"	S	urface Area		0.344	0.000	0.344	hectare"
"	Т	ime of concer	ntration	39.398	4.078	39.398	minutes"
"	T	ime to Centro	oid	146.826	91.941	146.825	minutes"
"	F	ainfall depth	า	47.265	47.265	47.265	mm"
"	F	ainfall volum	ıe	162.59	0.00	162.59	c.m"
"	F	ainfall losse	25	35.075	5.720	35.075	mm"
"	F	unoff depth		12.190	41.545	12.190	mm"
	F	unoff volume		41.93	0.00	41.93	c.m"
	F	unoff coeffic	ient	0.258	0.000	0.258	
	Ň	laximum flow		0.009	0.000	0.009	c.m/sec"
	40 F	IYDROGRAPH Add	l Runoff '	"	0.000	0.005	e •, 5 e e
	10 1	Add Runoff	"				
	-		a aa	0 064	0 064"		
	10 H	IVDROGRAPH Cor	0.001	Flow"	0.004		
	-10 I Q	Conv to Out	flow"	1100			
	0		A 990	0 0 0 0	0 061"		
	10 L		Combine	1"	0.004		
	40 1	Combine "	JoindThe	Ŧ			
	1	Node #"					
	T	Total Sita'	,				
	Ν	IOLAI SILE		0.0-	72 cm/c	oc"	
	۱۰ ۱	laximum iiow Wdnognanh yol	umo	405 2	72 C.III/S 21 c.m."		
	Г	iyurograpii voj		405.24			
	40		0.00: nt Nou		0.072		
	40 F	Stant No.	rt - New	in Ducary			
	Z			.y 2 0 000	0 072"		
	22 C	0.009 ATCUMENT 102'		0.009	0.072		
	25 U	AICHMENT 105	SCC"				
	1		3C3 - 6 "				
	1	Equal lenge	- [] 				
	102	SCS method					
	202						
	0.000	% Imperviou	15				
	0.321	Total Area	. 11				
	50.000	Flow lengtr)				
	1.500	Overland SI	Lope				
	0.321	Pervious Ar	rea"				
	50.000	Pervious le	ength"				
	1.500	Pervious sl	lope"				
	0.000	Impervious	Area"				
	50.000	Impervious	⊥ength"				
	1.500	Impervious	s⊥ope"				
	0.250	Pervious Ma	anning 'n				
	75.000	Pervious SC	S Curve N	No."			
"	0.258	Pervious Ru	unoff coet	Hicient"			
"	" 8.467 Pervious Initial abstraction	on"					
---	--------------------------------------	-----------------------------					
"	" 0.015 Impervious Manning 'n'"						
"	" 98.000 Impervious SCS Curve No."						
"	" 0.000 Impervious Runoff coefficie	ent"					
"	" 0.100 Impervious Ia/S coefficient	t"					
"	" 0.518 Impervious Initial abstract	tion"					
"	" 0.010 0.000 0	.009 0.072 c.m/sec"					
"	" Catchment 103 Perviou	us Impervious Total Area "					
	" Surface Area 0.321	0.000 0.321 hectare"					
	" Time of concentration 28.336	2.933 28.336 minutes"					
	" Time to Centroid 133.168	8 90.243 133.168 minutes"					
	" Rainfall depth 47.265	47.265 47.265 mm"					
	" Rainfall volume 151.72	0.00 151.72 c.m"					
	Rainfall losses 35.083	5.984 35.083 mm"					
	Runoff depth 12.181	41.281 12.181 mm"					
	Runott volume 39.10	0.00 39.10 c.m ²					
	Runott coetticient 0.258	0.000 0.258					
	Maximum flow 0.010	0.000 0.010 C.m/sec					
	40 HIDROGRAPH AUG RUNOTT						
	" 40 HYDROGRAPH Copy to Outflow"	.009 0.072					
	" 8 Conv to Outflow"						
	" 0.010 0.010 0	.010 0.072"					
	" 40 HYDROGRAPH Combine 1"						
	" 6 Combine "						
	" 1 Node #"						
"	" Total Site"						
"	" Maximum flow	0.080 c.m/sec"					
"	" Hydrograph volume 44	44.323 c.m"					
"	" 0.010 0.010 0	.010 0.080"					
"	" 40 HYDROGRAPH Start - New Tributa	ary"					
"	" 2 Start - New Tributary"						
"	" 0.010 0.000 0	.010 0.080"					
"	" 33 CATCHMENT 104"						
"	" 1 Triangular SCS"						
	" 1 Equal length"						
	" 1 SCS method"						
	" 104 To the NW Wetland B"						
	" 0.000 % Impervious"						
	" 0.812 Iotal Area"						
	80.000 FIOW length"						
	2.500 UVErland Slope"						
	" 80 000 Penvious longth"						
	" 2 500 Pervious clope"						
	" 0 000 Tenenvious Apea"						
	" 80 000 Impervious Area						
	" 2.500 Impervious slope"						
	" 0.250 Pervious Manning 'n'"						

"	75.000	Pervious SCS Curve	No."					
"	0.258	Pervious Runoff co	effici	ent"				
"	0.100	Pervious Ia/S coef	ficien	t"				
"	8.467	8.467 Pervious Initial abstraction"						
"	0.015	Impervious Manning	'n'"					
"	98.000	Impervious SCS Cur	ve No.					
"	0.000	Impervious Runoff	coeffi	cient"				
"	0.100	Impervious Ia/S co	effici	ent"				
"	0.518	Impervious Initial	abstra	action'				
"		0.024 0.0	00	0.010	0.080	0 c.m/sec		
"	(Catchment 104	Perv	ious	Impervio	us Total /	Area	"
"	9	Surface Area	0.81	2	0.000	0.812		hectare"
"	٦	ime of concentration	32.2	30	3.336	32.229		minutes"
"	٦	ime to Centroid	137.9	983	90.888	137.98	3	minutes"
"	F	≀ainfall depth	47.20	65	47.265	47.265		mm"
"	F	≀ainfall volume	383.	79	0.00	383.79		c.m"
"	F	≀ainfall losses	35.0	80	5.976	35.080		mm"
"	F	≀unoff depth	12.1	84	41.288	12.184		mm"
"	F	≀unoff volume	98.94	4	0.00	98.94		c.m"
"	F	<pre>{unoff coefficient</pre>	0.25	8	0.000	0.258		
"	Ν	1aximum flow	0.024	4	0.000	0.024		c.m/sec"
"	40 H	HYDROGRAPH Add Runoff						
"	4	Add Runoff "						
"		0.024 0.0	24	0.010	0.080	9"		
"	40 H	HYDROGRAPH Copy to Ou	tflow"					
"	8	Copy to Outflow"						
"		0.024 0.0	24	0.024	0.080	9"		
	40 H	IYDROGRAPH Combine	1"					
	6	Combine "						
	1	Node #"						
		lotal Site"		0.44		<i>,</i>		
	N	laximum flow		0.10	02 C.M,	/sec"		
	ŀ	lydrograph volume	~ ~	543.26	51 c.m			
	20		24	0.024	0.10	2		
	ל סכ	Bupoff Totols or 5	104 .vtt"					
	3	RUNUTT IULAIS ON E	VT I			1 150	hoct	-ano"
	-	Iotal Calchment area				4.420	hect	.are
	ן ד	fotal impervious area				0.000	nect	.are
	10	otat % timpervious				0.000		
	17 E							

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			SWM Memo"
"		Output filename:	10YR - PRE B.out"
"		Licensee name:	Α"
"		Company	п
"		Date & Time last used:	9/12/2022 at 9:18:53 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	2221.000	Coefficient A"	
"	12.000	Constant B"	
"	0.908	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	М	aximum intensity	169.551 mm/hr"
"	Т	otal depth	56.290 mm"
"	6	010hyd Hydrograph exte	ension used in this file"
"	33 C	ATCHMENT 101"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	101	To Southwest Wetland A"	
"	0.000	% Impervious"	
"	2.981	Total Area"	
"	200.000	Flow length"	
"	3.500	Overland Slope"	
	2.981	Pervious Area"	
"	200.000	Pervious length"	
	3.500	Pervious slope"	
	0.000	Impervious Area"	
"	200.000	Impervious length"	
"	3.500	Impervious slope"	
"	0.250	Pervious Manning 'n'"	
	75.000	Pervious SCS Curve No."	
	0.307	Pervious Runoff coeffici	ient"
	0.100	Pervious Ia/S coefficier	nt"
	8.467	Pervious Initial abstrac	ction"
	0.015	Impervious Manning 'n'"	
	98.000	Impervious SCS Curve No.	· · · · · · ·
	0.000	Impervious Runott coeff	1Clent"
	0.100	Impervious Ia/S coeffic	lent"
	0.518	Impervious Initial abstr	raction"

"		0.107	0.000	0.000	0.000 (:.m/sec"	
"	Cate	chment 101		Pervious	Impervious	Total Area	п
"	Sur	face Area		2.981	0.000	2.981	hectare"
"	Time	e of concentrat	ion -	42.571	4.808	42.571	minutes"
"	Time	e to Centroid		149.285	91.994	149.285	minutes"
"	Rain	nfall depth		56.290	56.290	56.290	mm"
"	Rain	nfall volume		1678.01	0.00	1678.01	c.m"
"	Rain	nfall losses		39.034	5.712	39.034	mm"
"	Runo	off depth		17.256	50.579	17.256	mm"
"	Runo	off volume		514.40	0.00	514.41	c.m"
"	Runo	off coefficient	-	0.307	0.000	0.307	п
"	Max	imum flow		0.107	0.000	0.107	c.m/sec"
"	40 HYDI	ROGRAPH Add Rur	noff "				
"	4 /	Add Runoff "					
"		0.107	0.107	0.000	0.000"		
"	40 HYDI	ROGRAPH Copy to	o Outf	low"			
"	8 (Copv to Outflow	v"				
"	-	0.107	0.107	0.107	0.000"		
"	40 HYDI	ROGRAPH Combi	ine	1"			
"	6 (Combine "	-				
п	1 1	Node #"					
п		Total Site"					
п	Max	imum flow		0.10	07 c.m/se	≥c"	
"	Hvdi	rograph volume		514.40	05 c.m"		
"		0.107	0.107	0.107	0.107"		
"	40 HYDI	ROGRAPH Start -	- New	Tributarv"			
п	2	Start - New Tri	ibutar	v"			
"		0.107	0.000	0.107	0.107"		
"	33 CAT(CHMENT 102"					
п	1	Triangular SCS'					
"	1	Equal length"					
"	1 9	SCS method"					
"	102	To the South"					
"	0.000	% Impervious"					
"	0.344	Total Area"					
"	100.000 I	Flow length"					
"	2.000	Overland Slope'	,				
"	0.344	Pervious Area"					
"	100.000	Pervious length	י"				
"	2.000	Pervious slope'	ı				
"	0.000	Impervious Area	a"				
"	100.000	Impervious leng	gth"				
"	2.000	Impervious slor	be"				
"	0.250 I	Pervious Mannir	ng 'n'				
"	75.000 I	Pervious SCS Cu	urve N	o."			
"	0.307 I	Pervious Runoff	f coef	ficient"			
"	0.100	Pervious Ia/S d	coeffi	cient"			
"	8.467 I	Pervious Initia	al abs	traction"			
"	0.015	Impervious Manr	ning '	n'"			
"	98.000	Impervious SCS	Curve	No."			
		-					

"	0.000	Impervious Runoff	<pre>coeffic</pre>	ient"			
"	0.100	Impervious Ia/S o	coefficie	ent"			
"	0.518	Impervious Initia	al abstra	ction'	1		
"		0.015 0.	.000	0.107	0.107 c	.m/sec"	
"	Ca	atchment 102	Pervi	ous	Impervious	Total Area	
"	Si	urface Area	0.344	Ļ	0.000	0.344	hectare"
"	T:	ime of concentratio	on 33.22	20	3.752	33.220	minutes"
"	T:	ime to Centroid	137.5	540	90.510	137.540	minutes"
"	Ra	ainfall depth	56.29	0	56.290	56.290	mm"
"	Ra	ainfall volume	193.6	54	0.00	193.64	c.m"
"	Ra	ainfall losses	39.03	32	6.201	39.032	mm"
"	Ri	unoff depth	17.25	8	50.089	17.258	mm"
"	Ri	unoff volume	59.37	,	0.00	59.37	c.m"
"	Ri	unoff coefficient	0.307	,	0.000	0.307	
"	Ma	aximum flow	0.015	5	0.000	0.015	c.m/sec"
"	40 H	YDROGRAPH Add Runof	f"				
"	4	Add Runoff "					
"		0.015 0.	015	0.107	0.107"		
"	40 H	YDROGRAPH Copy to C	Outflow"				
"	8	Copy to Outflow"					
"		0.015 0.	015	0.015	0.107"		
"	40 H	YDROGRAPH Combine	2 1"				
"	6	Combine "					
"	1	Node #"					
"		Total Site"					
"	Ma	aximum flow		0.12	21 c.m/se	ec"	
"	H	vdrograph volume		573.77	73 c.m"		
"	-	0.015 0.	015	0.015	0.121"		
"	40 H	YDROGRAPH Start - N	lew Tribu	itary"			
"	2	Start - New Tribu	utarv"	,			
"		0.015 0.	.000	0.015	0.121"		
"	33 C/	ATCHMENT 103"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	1	SCS method"					
"	103	To the north ROW"	ı				
"	0.000	% Impervious"					
"	0.321	Total Area"					
"	50.000	Flow length"					
"	1.500	Overland Slope"					
"	0.321	Pervious Area"					
"	50.000	Pervious length"					
"	1.500	Pervious slope"					
"	0.000	Impervious Area"					
"	50.000	Impervious length	า"				
"	1.500	Impervious slope					
"	0.250	Pervious Manning	'n'"				
"	75.000	Pervious SCS Curv	/e No."				
"	0.307	Pervious Runoff o	coefficie	ent"			
"	0.100	Pervious Ia/S coe	efficient	."			

"	8.467	Pervious Initia	l abst	raction"			
"	0.015	Impervious Mann	ing 'n				
"	98.000	Impervious SCS	Curve	No."			
"	0.000	Impervious Runo	ff coe	fficient"			
"	0.100	Impervious Ia/S	coeff	icient"			
"	0.518	Impervious Init	ial ab	straction"			
"		0.017	0.000	0.015	0.121 c	.m/sec"	
	Cat	chment 103	P	ervious	Impervious	Total Area	"
	Sur	face Area	0	.321	0.000	0.321	hectare"
	Tim	e of concentrat	ion 2	3.893	2.698	23.893	minutes"
	Tim	le to Centroid	1.	25.809	88.912	125.809	minutes"
	Rai	.nfall depth	5	6.290	56.290	56.290	mm"
	Rai	ntall volume	1	80.69	0.00	180.69	c.m"
	Каі	.nfall losses	3	9.036	6.338	39.036	mm."
	Run	off depth	1	7.254	49.953	17.254	mm
	Run	off volume	5	5.39	0.00	55.39	C.m
	Run	OTT COETTICIENT	0	.30/	0.000	0.307	a
		LINUM TIOW	ە محد "	.01/	0.000	0.01/	c.m/sec
		Add Rupoff "	ΟΤΤ				
	4		0 017	0 015	Q 101"		
		BOGRAPH Conv to	0.017	0.015 0w"	0.121		
	40 MD	Conv to Outflow	"	OW			
	0	0.017	0.017	0,017	0.121"		
	40 HYD)ROGRAPH Combi	ne	1"	0.121		
	6	Combine "	ine i	-			
"	1	Node #"					
"		Total Site"					
"	Мах	imum flow		0.13	4 c.m/se	c"	
"	Hyd	lrograph volume		629.16	0 c.m"		
"	-	0.017	0.017	0.017	0.134"		
"	40 HYD	ROGRAPH Start -	New T	ributary"			
"	2	Start - New Tri	butary	"			
"		0.017	0.000	0.017	0.134"		
"	33 CAT	CHMENT 104"					
	1	Triangular SCS"					
	1	Equal length"					
	1	SCS method"					
	104	Io the NW Wetla	nd B"				
	0.000	% Impervious"					
	0.812	Iotal Area"					
	80.000	Flow length					
	2.500	overtariu Stope"					
	0,012 0,000	Pervious Area					
	2 500	Penvious close"					
	2.500 0 000	Tmponvious Apon					
	80 000	Impervious Area	th"				
	2 500	Impervious slon	e"				
	a 250	Pervious Mannin	ς σ'n'"				
	0.250		ь "				

"	75.000	Pervious SCS Curve	No."					
"	0.307	Pervious Runoff co	efficie	ent"				
"	0.100	Pervious Ia/S coef	ficient	t"				
"	8.467	8.467 Pervious Initial abstraction"						
"	0.015	Impervious Manning	'n'"					
"	98.000	Impervious SCS Cur	ve No.'	II.				
"	0.000	Impervious Runoff	coeffic	cient"				
"	0.100	Impervious Ia/S co	efficie	ent"				
"	0.518	Impervious Initial	abstra	action'				
"		0.040 0.0	00	0.017	0.134	4 c.m/sec		
"	(Catchment 104	Perv	ious	Impervio	us Total /	Area "	
"	9	Surface Area	0.812	2	0.000	0.812	hecta	are"
"	٦	Time of concentration	27.17	76	3.069	27.176	minut	tes"
"	٦	Time to Centroid	129.9	929	89.471	129.92	9 minut	tes"
"	F	≀ainfall depth	56.29	90	56.290	56.290	mm"	
"	F	≀ainfall volume	457.6	98	0.00	457.08	c.m"	
"	F	≀ainfall losses	39.03	31	6.208	39.031	mm"	
"	F	≀unoff depth	17.2	59	50.082	17.259	mm"	
"	F	≀unoff volume	140.1	15	0.00	140.15	c.m"	
"	F	<pre>{unoff coefficient</pre>	0.307	7	0.000	0.307		
"	Ν	1aximum flow	0.040	9	0.000	0.040	c.m/s	sec"
"	40 H	HYDROGRAPH Add Runoff						
"	4	Add Runoff "						
"		0.040 0.0	40	0.017	0.134	4"		
"	40 H	HYDROGRAPH Copy to Ou	tflow"					
"	8	Copy to Outflow"						
"		0.040 0.0	40	0.040	0.134	4"		
	40 H	IYDROGRAPH Combine	1"					
	6	Combine "						
	1	Node #"						
		lotal Site"		0.4-	- 4	,		
	۲ ب	laximum flow		0.1	/1 C.m	/sec"		
	ŀ	lydrograph volume	40	769.36	16 C.M			
	20		40	0.040	0.17	1		
	סכ ר	NIARI/KE-SIAKI IUIALS	104 .vtt"					
	3	RUNUTT IULAIS ON E				1 150	hoctors"	
	-	fotal Calchment area				4.400	hectare	
	-	Total impervious area				0.000	nectare	
	10 1	iotai % impervious				0.000		
	17 E							

		MIDUSS Output	>"
п		MIDUSS version	Version 2.25 rev. 473"
п		MIDUSS created	Sunday, February 7, 2010"
п	10	Units used:	ie METRIC"
п		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
п			SWM Memo"
п		Output filename:	25YR - PRE B.out"
п		Licensee name:	Α"
п		Company	"
п		Date & Time last used:	9/12/2022 at 9:19:46 AM"
" 31	TI	ME PARAMETERS"	
п	5.000	Time Step"	
п	180.000	Max. Storm length"	
п	1500.000	Max. Hydrograph"	
" 32	ST	ORM Chicago storm"	
	1	Chicago storm"	
п	3158.000	Coefficient A"	
п	15.000	Constant B"	
п	0.936	Exponent C"	
п	0.400	Fraction R"	
п	180.000	Duration"	
п	1.000	Time step multiplier"	
п	Ma	aximum intensity	191.557 mm/hr"
п	To	otal depth	68.266 mm"
п	6	025hvd Hvdrograph exte	nsion used in this file"
" 33	CA	ATCHMENT 101"	
"	1	Triangular SCS"	
п	1	Equal length"	
п	1	SCS method"	
п	101	To Southwest Wetland A"	
п	0.000	% Impervious"	
п	2.981	Total Area"	
п	200.000	Flow length"	
п	3.500	Overland Slope"	
п	2.981	Pervious Area"	
п	200.000	Pervious length"	
п	3.500	Pervious slope"	
п	0.000	Impervious Area"	
	200.000	Impervious length"	
п	3.500	Impervious slope"	
п	0.250	Pervious Manning 'n'"	
п	75.000	Pervious SCS Curve No."	
п	0.362	Pervious Runoff coeffici	ent"
п	0.100	Pervious Ia/S coefficien	t"
	8.467	Pervious Initial abstrac	tion"
п	0.015	Impervious Manning 'n'"	
п	98,000	Impervious SCS Curve No.	п
п	0.000	Impervious Runoff coeffi	cient"
п	0.100	Impervious Ia/S coeffici	ent"
п	0.518	Impervious Initial abstr	action"

"	0.174	0.000	0.000	0.000 0	.m/sec"	
"	Catchment 101	I	Pervious	Impervious	Total Area	
"	Surface Area		2.981	0.000	2.981	hectare"
"	Time of concentr	ation :	37.271	4.560	37.271	minutes"
"	Time to Centroid	l :	141.084	91.030	141.084	minutes"
"	Rainfall depth	(68.266	68.266	68.266	mm"
"	Rainfall volume		2035.01	0.00	2035.02	c.m"
"	Rainfall losses	4	43.524	5.797	43.524	mm"
"	Runoff depth		24.742	62.470	24.742	mm"
"	Runoff volume	•	737.55	0.00	737.56	c.m"
"	Runoff coefficie	ent (0.362	0.000	0.362	
"	Maximum flow	(0.174	0.000	0.174	c.m/sec"
"	40 HYDROGRAPH Add R	unoff "				
"	4 Add Runoff "					
"	0.174	0.174	0.000	0.000"		
"	40 HYDROGRAPH Copy	to Outf	low"			
"	8 Copy to Outfl	.ow"				
"	0.174	0.174	0.174	0.000"		
"	40 HYDROGRAPH Com	bine	1"			
"	6 Combine "					
"	1 Node #"					
"	Total Site"					
"	Maximum flow		0.17	74 c.m/se	ec"	
"	Hydrograph volum	ie	737.55	55 c.m"		
"	0.174	0.174	0.174	0.174"		
"	40 HYDROGRAPH Start	: - New [·]	Tributary"			
"	2 Start - New T	ributar	v"			
"	0.174	0.000	0.174	0.174"		
"	33 CATCHMENT 102"					
"	1 Triangular SC	:S"				
"	1 Equal length"					
"	1 SCS method"					
"	102 To the South"					
"	0.000 % Impervious"					
"	0.344 Total Area"					
"	100.000 Flow length"					
"	2.000 Overland Slop	e"				
"	0.344 Pervious Area	"				
"	100.000 Pervious leng	th"				
"	2.000 Pervious slop	e"				
"	0.000 Impervious Ar	ea"				
"	100.000 Impervious le	ngth"				
"	2.000 Impervious sl	.ope"				
"	0.250 Pervious Manr	ing 'n'	п			
"	75.000 Pervious SCS	Curve No	o."			
"	0.362 Pervious Runc	off coef	ficient"			
"	0.100 Pervious Ia/S	coeffi	cient"			
"	8.467 Pervious Init	ial abs [.]	traction"			
"	0.015 Impervious Ma	Inning 'I	n'"			
"	98.000 Impervious SC	S Curve	No."			
	•					

"	0.000	Impervious	Runoff co	pefficient"			
"	0.100	Impervious	Ia/S coef	fficient"			
"	0.518	Impervious	Initial a	abstraction	11		
"		0.024	0.000	0.174	0.174	c.m/sec"	
"	Cat	tchment 102		Pervious	Impervious	Total Area	"
"	Sui	rface Area		0.344	0.000	0.344	hectare"
"	Tir	me of concen	tration	29.085	3.559	29.085	minutes"
"	Tir	me to Centro	id	130.864	89.678	130.863	minutes"
"	Rat	infall depth	I	68.266	68.266	68.266	mm"
"	Rat	infall volum	e	234.84	0.00	234.84	c.m"
"	Rat	infall losse	S	43.536	6.654	43.536	mm"
"	Rur	noff depth		24.730	61.613	24.730	mm"
"	Rur	noff volume		85.07	0.00	85.07	c.m"
	Rur	noff coeffic	ient	0.362	0.000	0.362	"
	Max	ximum flow		0.024	0.000	0.024	c.m/sec"
	40 HYI	DROGRAPH Add	Runoff '		0.000	0.02	
	4	Add Runoff	"				
	-	A 0 0 0 0 0	Q Q2/	1 0 174	0 174"		
	40 HVI	DROGRAPH Con	10.02	Flow"	0.1/4		
	-0 III 8	Conv to Out	flow"	1100			
	0		A 02/	1 0 021	0 174"		
			ombine	+ 0.02+ 1"	0.1/4		
	-+0 1111	Combine "	OIIDTHE	Ŧ			
	0	Node #"					
	T	Total Sito"					
	Мах	IOLAI SILE		0.10			
	Md	ATUUM TIOM		822 6	97 C.III/S	ec	
	нус	urograph voi	ume	822.6			
	40		0.024	+ 0.024	0.197		
	40 HYL	JRUGRAPH Sta	rt - New	Iributary			
	2	Start - New	r Iributar	ry Do obt	0 107		
	22 64	0.024	0.000	0.024	0.19/*		
	33 CA	TCHMENT 103					
	1	Iriangular	SCS"				
	1	Equal lengt	'h''				
	1	SCS method"					
	103	lo the nort	h ROW"				
	0.000	% Imperviou	IS"				
	0.321	Total Area"					
	50.000	Flow length	, "				
"	1.500	Overland Sl	ope"				
"	0.321	Pervious Ar	ea"				
	50.000	Pervious le	ngth"				
"	1.500	Pervious sl	ope"				
"	0.000	Impervious	Area"				
"	50.000	Impervious	length"				
"	1.500	Impervious	slope"				
"	0.250	Pervious Ma	nning 'n'				
"	75.000	Pervious SC	S Curve M	No."			
"	0.362	Pervious Ru	noff coef	fficient"			
"	0.100	Pervious Ia	/S coeffi	icient"			

"	8.467 Per	vious Initial abs	straction"			
"	0.015 Imp	ervious Manning	'n'"			
"	98.000 Imp	ervious SCS Curve	e No."			
"	0.000 Imp	ervious Runoff co	pefficient"			
"	0.100 Imp	ervious Ia/S coe	fficient"			
"	0.518 Imp	ervious Initial a	abstraction'			
"		0.028 0.006	0.024	0.197 (c.m/sec"	
	Catchm	ent 103	Pervious	Impervious	Total Area	
	Surfac	e Area	0.321	0.000	0.321	hectare"
	Time o	f concentration	20.918	2.559	20.918	minutes"
	Time t	o Centroid	120.675	88.180	120.675	minutes"
	Rainta	11 depth	68.266	68.266	68.266	mm''
	Rainta	ll volume	219.13	0.00	219.13	c.m"
	Rainta	11 losses	43.52/	6.542	43.52/	mm
	Runoff	depth	24.740	61.724	24.740	mm
	Runoff	volume	79.41	0.00	79.41	C.m
	Runott	coetticient	0.362	0.000	0.362	
		M TIOW	0.028	0.000	0.028	c.m/sec
		RAPH AUU KUNOTT				
	4 Auu		0 0 0 0 1	0 107"		
		$\frac{0.025}{\text{RAPH Conv to Out}}$	flow"	0.197		
		w to Outflow"	1100			
	0 000	0.028 0.025	8 0.028	0.197"		
	40 HYDROG	RAPH Combine	1"	0.137		
	6 Com	bine "	-			
	1 Nod	e #"				
"	Tot	al Site"				
"	Maximu	m flow	0.2	19 c.m/se	ec"	
"	Hydrog	raph volume	902.04	40 c.m"		
"		0.028 0.028	8 0.028	0.219"		
"	40 HYDROG	RAPH Start - New	Tributary"			
"	2 Sta	rt - New Tributar	ry"			
"		0.028 0.000	0.028	0.219"		
"	33 CATCHM	ENT 104"				
"	1 Tri	angular SCS"				
	1 Equ	al length"				
	1 SCS	method"				
	104 To	the NW Wetland B'				
	0.000 % 1	mpervious"				
	0.812 lot	al Area"				
	80.000 F10	W length"				
	2.500 UVe	riand Siope				
		vious Ared				
		vious religili				
	2.500 Per 0 000 Tmm	vious siope				
	80 000 IIIP 80 000 Tmn	ervious Area				
	2,500 Tmp	ervious slone"				
	0.250 Per	vious Manning 'n				
	0.250 101					

"	75.000	Pervious SCS Curve	No."					
"	0.362	Pervious Runoff coe	efficient"					
"	0.100	0.100 Pervious Ia/S coefficient"						
"	8.467 Pervious Initial abstraction"							
"	0.015	Impervious Manning	'n'"					
"	98.000	Impervious SCS Curv	/e No."					
"	0.000	Impervious Runoff d	coefficient"					
"	0.100	Impervious Ia/S coe	efficient"					
"	0.518	Impervious Initial	abstraction'					
"		0.064 0.00	0.028	0.219	c.m/sec"			
"	(Catchment 104	Pervious	Impervious	Total Are	a "		
"		Surface Area	0.812	0.000	0.812	hectare"		
"	-	Time of concentration	23.793	2.911	23.793	minutes"		
"	-	Time to Centroid	124.266	88.716	124.266	minutes"		
"	I	Rainfall depth	68.266	68.266	68.266	mm"		
"	ļ	Rainfall volume	554.32	0.00	554.32	c.m"		
"	I	Rainfall losses	43.527	6.771	43.527	mm"		
"	ļ	Runoff depth	24.739	61.496	24.739	mm"		
"	I	Runoff volume	200.88	0.00	200.88	c.m"		
"	I	Runoff coefficient	0.362	0.000	0.362			
"	I	Maximum flow	0.064	0.000	0.064	c.m/sec"		
"	40 I	HYDROGRAPH Add Runoff						
"	4	Add Runoff "						
"		0.064 0.06	64 0.028	0.219"				
"	40 I	HYDROGRAPH Copy to Out	flow"					
"	8	Copy to Outflow"						
"		0.064 0.06	64 0.064	0.219"				
"	40 I	HYDROGRAPH Combine	1"					
	6	Combine "						
	1	Node #"						
	_	Total Site"						
	1	Maximum +low	0.2	77 c.m/s	5C			
	ł	Hydrograph volume	1102.92	20 c.m"				
		0.064 0.06	54 0 . 064	0.277"				
	38 3	START/RE-START TOTALS	104"					
	3	KUNOTT IOTALS ON EX		-	450	- 4 11		
		Iotal Catchment area		4	.458 he	ctare"		
	-	Total Impervious area		0	.000 he	ctare		
	10	IOTAL % IMPERVIOUS		0	.000			
	19	EXTI						

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			SWM Memo"
"		Output filename:	50YR - PRE B.out"
"		Licensee name:	Α"
"		Company	u .
"		Date & Time last used:	9/12/2022 at 9:20:34 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	3886,000	Coefficient A"	
	16.000	Constant B"	
	0.950	Exponent C"	
	0.400	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multinlier"	
		laximum intensity	215.802 mm/hr"
	Т	otal denth	77.647 mm"
	6	050hvd Hvdrograph ext	ension used in this file"
	33 0	ATCHMENT 101"	
	1	Triangular SCS"	
	1	Faual length"	
	1	SCS method"	
	101	To Southwest Wetland A"	
	0,000	% Impervious"	
	2,981	Total Area"	
	200 000	Flow length"	
	3 500	Overland Slone"	
	2 981	Pervious Area"	
	200 000	Pervious length"	
	3 500	Pervious slope"	
	0 000	Impervious Area"	
	200.000	Impervious length"	
	3 500	Impervious slope"	
	0 250	Pervious Manning 'n'"	
	75 000	Pervious SCS Curve No."	
	0 100	Pervious Supoff coeffic	iont"
	0.400	Penvious Ta/S coefficio	nt"
	Q 167	Denvious Initial aboth	ction"
	0.407 0.015	Tmpopyious Monning 's'"	
	00 000		п
	0000	Impervious SCS Curve NO	· icient"
	0.000	Impervious Ta/S cooffic	iont"
	0.100	Imponyious Initial about	naction"
	0.218	Tubel ATORS TUTCTAT SDSC	TACTION

"	0.23	7 0.000	0.000	0.000 (c.m/sec"	
"	Catchment 10	1	Pervious	Impervious	Total Area	
"	Surface Area		2.981	0.000	2.981	hectare"
"	Time of conc	entration	33.817	4.339	33.816	minutes"
"	Time to Cent	roid	135.954	90.329	135.954	minutes"
"	Rainfall dep	th	77.647	77.647	77.647	mm"
"	Rainfall vol	ume	2314.67	0.00	2314.67	c.m"
"	Rainfall los	ses	46.553	6.059	46.553	mm"
"	Runoff depth		31.094	71.588	31.094	mm"
"	Runoff volum	e	926.91	0.00	926.91	c.m"
"	Runoff coeff	icient	0.400	0.000	0.400	н
"	Maximum flow		0.237	0.000	0.237	c.m/sec"
"	40 HYDROGRAPH A	dd Runoff "	ı			
"	4 Add Runof	f "				
"	0.23	7 0.237	7 0.000	0.000"		
"	40 HYDROGRAPH C	opv to Outf	Flow"			
"	8 Copy to 0	utflow"	-			
"	0.23	7 0.237	7 0.237	0.000"		
"	40 HYDROGRAPH	Combine	1"			
"	6 Combine "					
	1 Node #"					
"	Total Sit	e"				
	Maximum flow	C	0.2	37 c.m/se	<u>م</u> د"	
	Hydrograph v	olume	926.9	13 c.m"		
	0,23	7 0.237	7 0.237	0.237"		
	40 HYDROGRAPH S	tart - New	Tributary"	0.237		
	2 Start - N	ew Tributar	vv"			
	2 Start 1	7 9 996	y A 0.237	Ø 237"		
	33 CATCHMENT 10	2" 2"	0.257	0.257		
	1 Triangula	- r 5(5"				
	1 Faual len	oth"				
	1 SCS metho	d"				
	102 To the So	uth"				
	0 000 % Impervi	ous"				
	0.000 % impervi 0.344 Total Are	ous >"				
	100 000 Elow leng	a th"				
	2 000 Ovenland	Slope"				
		Aroa"				
	100 000 Ponvious	n ca longth"				
		clopo"				
		siope				
		s Area				
		s religion				
		s stobe				
	75 000 Perivious					
		NUHUTT COET	iciont"			
		1a/S COETT1				
		TUTCIAL ADS	straction			
	Imperviou	s manning				
·	שטייאנ Twbervion	s sis curve	e NO.			

"	0.000	Impervious Runoff	<pre>coefficient</pre>	t"		
"	0.100	Impervious Ia/S o	coefficient"			
"	0.518	Impervious Initia	al abstractio	on"		
"		0.032 0.	000 0.23	0.237	c.m/sec"	
"	C	atchment 102	Pervious	Impervious	Total Area	п
"	S	urface Area	0.344	0.000	0.344	hectare"
"	Т	ime of concentratio	on 26.389	3.386	26.389	minutes"
"	Т	ime to Centroid	126.646	89.011	126.646	minutes"
"	R	ainfall depth	77.647	77.647	77.647	mm"
"	R	ainfall volume	267.11	0.00	267.11	c.m"
"	R	ainfall losses	46.561	6.769	46.561	mm"
"	R	unoff depth	31.086	70.878	31.086	mm"
	R	unoff volume	106.94	0.00	106.94	c.m"
	R	unoff coefficient	0.400	0.000	0.400	
"	M	aximum flow	0.032	0.000	0.032	c.m/sec"
	40 H	YDROGRAPH Add Runof	-f "			,
	.е 4	Add Runoff "				
	-	0 032 0	032 0.23	α 237"		
	40 H	VDROGRAPH Conv to ()utflow"	0.257		
	-0 II 8	Conv to Outflow"				
	0		032 0 03	ο ο ο ο ο ο ο ο ο ο ο ο ο		
п	10 L	VDROGRADH Combine	0.02 0.01	0.257		
	40 II 6	Combine "	- -			
п	0	Node #"				
	T	Noue # Total Sito"				
	м	IULAI SILE	0	267 cm/c	oc"	
	[*], [],	aximum tiow	1022	.207 C.III/S	ec	
	п	yurograph vorume	000 000	.849 C.III		
	40					
	40 H	YDRUGRAPH Start - N	vew iributary	/		
	2	Start - New Iribu	itary			
	22 0	0.032 0.	000 0.0:	32 0.267		
	33 C.	AICHMENI 103				
	1	Irlangular SCS				
	1	Equal length"				
	1	SCS method"				
	103	To the north ROW	•			
	0.000	% Impervious"				
	0.321	Total Area"				
	50.000	Flow length"				
	1.500	Overland Slope"				
"	0.321	Pervious Area"				
"	50.000	Pervious length"				
"	1.500	Pervious slope"				
"	0.000	Impervious Area"				
"	50.000	Impervious length	ו"			
"	1.500	Impervious slope	1			
"	0.250	Pervious Manning	'n'"			
"	75.000	Pervious SCS Curv	/e No."			
"	0.400	Pervious Runoff o	coefficient"			
"	0.100	Pervious Ia/S coe	efficient"			

"	8.467	Pervious Initial	abstr	raction"			
"	0.015	Impervious Manni	ng 'n'				
"	98.000	Impervious SCS C	urve M	No."			
"	0.000	Impervious Runof	f coef	fficient"			
"	0.100	Impervious Ia/S	coeffi	icient"			
"	0.518	Impervious Initi	al abs	straction"	I		
"		0.037 0	.000	0.032	0.267 0	.m/sec"	
	Ca	tchment 103	Pe	ervious	Impervious	Total Area	
	Su	irface Area	0.	.321	0.000	0.321	hectare"
	Ti	me of concentration	on 18	8.980	2.435	18.980	minutes"
	Ti	me to Centroid	11	17.376	87.587	117.376	minutes"
	Ra	infall depth	77	7.647	77.647	77.647	mm"
	Ra	infall volume	22	49.25	0.00	249.25	c.m"
	Ka	aintall losses	46	5.596	6.665	46.596	mm
	RL	inoff depth	31	1.052	70.982	31.052	mm."
	RL	INOTT VOLUME	99	9.68	0.00	99.68	C.m
	RL	Inott coetticient	0.	.400	0.000	0.400	
	40 IN	IXIMUM TIOW	.ש בב יי	.037	0.000	0.037	c.m/sec
	40 DI	Add Pupoff "					
	4		027	0 022	0 267"		
	10 HV	(DROGRAPH Conv to)	.057 Sutfle	0.052 w"	0.207		
	40 III 8	Conv to Outflow"	JUCIIC	JW			
	0	0.037 0	037	0.037	0.267"		
	40 HY	DROGRAPH Combin	. 0 <i>5,</i> P 1	1"	0.207		
	6	Combine "		-			
"	1	Node #"					
"		Total Site"					
"	Ма	aximum flow		0.29)5 c.m/se	ec"	
"	Ну	drograph volume		1133.52	25 c.m"		
"	-	0.037 0	.037	0.037	0.295"		
"	40 HY	/DROGRAPH Start -	New Tr	ributary"			
"	2	Start - New Trib	utary'				
"		0.037 0	.000	0.037	0.295"		
"	33 CA	TCHMENT 104"					
	1	Triangular SCS"					
	1	Equal length"					
	1	SCS method"					
	104	To the NW Wetlan	d B"				
	0.000	% Impervious"					
	0.812	lotal Area"					
	80.000	Flow length					
	2.500	Dopuious Apop"					
	0.012	Pervious Area					
	2 500	Penvious tengen					
	2.200 0.000	Tmpopyious Stope					
	0000.00 000 08	Impervious Ared	h"				
	2 500	Impervious slope					
	2.500 0 250	Pervious Manning	'n'"				
	0.250	i ci vicus mannilig					

"	75.000	Pervious SCS Curve	No."			
"	0.400	Pervious Runoff co	efficient"			
"	0.100	Pervious Ia/S coef [.]	ficient"			
"	8.467	Pervious Initial a	bstraction"			
"	0.015	Impervious Manning	'n'"			
"	98.000	Impervious SCS Cur	ve No."			
"	0.000	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	efficient"			
"	0.518	Impervious Initial	abstraction			
"		0.089 0.00	00 0.037	0.295	c.m/sec"	
"	(Catchment 104	Pervious	Impervious	Total Area	a "
"		Surface Area	0.812	0.000	0.812	hectare"
"	-	Fime of concentration	21.588	2.770	21.588	minutes"
"	-	Fime to Centroid	120.642	88.113	120.642	minutes"
"	I	Rainfall depth	77.647	77.647	77.647	mm"
"	I	Rainfall volume	630.50	0.00	630.50	c.m"
"	I	Rainfall losses	46.564	6.995	46.564	mm"
"	I	Runoff depth	31.083	70.652	31.083	mm"
"	I	Runoff volume	252.39	0.00	252.40	c.m"
"	I	Runoff coefficient	0.400	0.000	0.400	"
"	I	Maximum flow	0.089	0.000	0.089	c.m/sec"
"	40 I	HYDROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.089 0.08	89 0.037	0.295"		
"	40 I	HYDROGRAPH Copy to Ou	tflow"			
"	8	Copy to Outflow"				
		0.089 0.08	89 0.089	0.295"		
	40 1	HYDROGRAPH Combine	1"			
	6	Combine "				
	1	Node #"				
		lotal Site"	0.0	77		
	1	Maximum flow	1205 0	// C.m/s	5C.,	
	I	a ago a a	1385.9	19 C.M		
	20		89 0.089 104"	0.377		
	: oc د	Pupoff Totals on E	104 VTT"			
	د	Total Catchmont and		л	158 ha	ctane"
		Total Impenyious and		4	.430 Het	ctane"
		Total % impervious area		0	.000 net	
	19	EXTT"		U	.000	
		-/_				

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			SWM Memo"
"		Output filename:	100YR - PRE B.out"
"		Licensee name:	Α"
"		Company	"
"		Date & Time last used:	9/12/2022 at 9:21:23 AM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	4688.000	Coefficient A"	
	17.000	Constant B"	
	0.962	Exponent C"	
	0.400	Fraction R"	
	180,000	Duration"	
	1,000	Time sten multiplier"	
	M	aximum intensity	239.354 mm/hr"
	Т	otal denth	87.079 mm"
	6	100hvd Hvdrograph ext	ension used in this file"
	33 C	ATCHMENT 101"	
	1	Triangular SCS"	
	- 1	Faual length"	
	- 1	SCS method"	
	101	To Southwest Wetland A"	
	0,000	% Impervious"	
	2.981	Total Area"	
	200,000	Flow length"	
	3 500	Overland Slone"	
	2 981	Pervious Area"	
	200 000	Pervious length"	
	3 500	Pervious slone"	
	9.900	Impervious Area"	
	200 000	Impervious length"	
	3 500	Impervious slope"	
	0 250	Pervious Manning 'n'"	
	75 000	Ponyious SCS Cunyo No."	
	0 131	Pervious Supoff coeffic	iont"
	0.4J4 0 100	Pervious Ta/S coefficio	nt"
	Q.100 Q /67	Pervious Initial abetra	ction"
	0.407 0 015	Tmppyjous Monping 's'"	
	00 000 CID.D		п
	0000	Impervious SCS Curve NO	· icient"
	0.000	Impervious Ta/S cooffic	iont"
	0.100	Imponyious Initial about	naction"
	0.218	impervious initial abst	TACTION

"		0.308	0.000	0.000	0.000	c.m/sec"	
"	Catchme	ent 101		Pervious	Impervious	Total Area	п
"	Surface	e Area		2.981	0.000	2.981	hectare"
"	Time o	f concentrat	tion	31.173	4.157	31.173	minutes"
"	Time to	o Centroid		131.911	89.743	131.911	minutes"
"	Rainfa	ll depth		87.079	87.079	87.079	mm"
"	Rainfa	ll volume		2595.83	0.00	2595.83	c.m"
"	Rainfa	ll losses		49.263	6.252	49.263	mm"
"	Runoff	depth		37.816	80.827	37.816	mm"
"	Runoff	volume		1127.29	0.00	1127.29	c.m"
"	Runoff	coefficient	t	0.434	0.000	0.434	"
"	Maximur	n flow		0.308	0.000	0.308	c.m/sec"
"	40 HYDROGI	RAPH Add Rui	noff '	1			,
"	4 Add	Runoff "	-				
"		0.308	0.308	3 0.000	0.000"		
"	40 HYDROGI	RAPH Copy to	o Outi	Flow"			
"	8 Conv	v to Outflow					
"	с сор.	0.308	0.308	3 0.308	0.000"		
"	40 HYDROGI	RAPH Comb	ine	1"			
"	6 Com	oine "		-			
	1 Node	- #"					
	Tota	al Site"					
	Maximur	n flow		0.30	28 c.m/se	<u>م</u> د"	
	Hydrog	raph volume		1127.28	89 c.m"		
	nyu ogi	0 308	a 308	2 0 308	0 308"		
	40 HYDROGI	RAPH Start	- New	Tributary"	0.500		
	2 Stai	rt - New Tr	ibutar	w"			
	2 500	0 308	a aaa	, A 208	0 308"		
	33 САТСНИ	=NT 102"	0.000	0.500	0.500		
	1 Tri:	angular SCS					
	1 Four	allength"					
	1 505	method"					
	102 To 1	the South"					
	0 000 % Tr	mervious"					
	0.000 % I	al Area"					
		Jongth"					
	2 888 000	aland Slone'					
	2.000 OVE	vious Anes"					
	100.044 FEIN	vious Area	o.''				
	2 000 Per	vious tengu	1				
	2.000 FEIN	nvious stope	- "				
	100 000 Imp	envious Area	a ~+ h "				
	ב מסטי ששי בעד Turpe	envious ien	sui oo"				
	2.000 Impe	vious SIO	ישי אפי אמייהי				
		vious Mannil	IS II	lo "			
		vious SCS CI	Live r	NU.			
	0.434 Perv	VIOUS KUNOT	i coel	i i cient			
	0.100 Perv	vious Ia/S (
	8.40/ Perv	VIOUS INITIA	ar 905 Traci				
		ervious Mani	LING				
·	AD AD TWDE	ervious SCS	curve	e NO.			

"	0.000	Impervious Runo	off coeffi	.cient"			
"	0.100	Impervious Ia/S	5 coeffici	.ent"			
"	0.518	Impervious Init	ial abstr:	action'	•		
"		0.042	0.000	0.308	0.308 0	.m/sec"	
"	C	Catchment 102	Perv	vious	Impervious	Total Area	
"	9	Surface Area	0.34	4	0.000	0.344	hectare"
"	1	ime of concentrat	ion 24.3	326	3.244	24.326	minutes"
"	1	ime to Centroid	123.	333	88.462	123.333	minutes"
"	F	Rainfall depth	87.0	79	87.079	87.079	mm"
"	F	Rainfall volume	299.	55	0.00	299.55	c.m"
"	F	Rainfall losses	49.2	244	7.030	49.244	mm"
"	F	Runoff depth	37.8	35	80.049	37.835	mm"
"	F	Runoff volume	130.	15	0.00	130.15	c.m"
"	F	Runoff coefficient	. 0.43	34	0.000	0.434	
"	Μ	laximum flow	0.04	2	0.000	0.042	c.m/sec"
"	40 H	YDROGRAPH Add Run	off "				· · · · · · · ·
	4	Add Runoff "					
		0.042	0.042	0.308	0.308"		
	40 H	YDROGRAPH Copy to	Outflow"				
		Conv to Outflow	/"				
	· ·	0.042	0.042	0.042	0.308"		
	40 F	IVDROGRAPH Combi	ne 1"	0.012	0.500		
		Combine "					
	1	Node #"					
	-	Total Site"					
	Ν	laximum flow		Q 34	19 cm/se		
	, F	Avdrogranh volume		1257 44	13 cm"	C	
	'	0 042	0 042	0 042	0 349"		
	10 F	IVDROGRAPH Start -	New Trib	utarv"	0.242		
	-10 1	Start - New Tri	hutary"	acar y			
	2		0 000	0 042	0 349"		
	33 (ΔTCHMENT 103"	0.000	0.042	0.242		
	1	Triangular SCS"					
	1	Foual length"					
	1	SCS method"					
	103	To the north RC)w/''				
	0 000	% Impervious"					
	0.000	Total Area"					
	50.021	Flow length"					
	1 500	Overland Slone"	ı				
	0 321	Pervious Area"					
	50.021	Pervious length					
	1 500	Dervious clore	1				
	000 A	Tmnonvious Anon					
	50.000	Impervious Area	, ,th"				
	1 500		o"				
	7.700	Donvious Monnin	νς νσ'ν'"				
	75 000	Dervious CCC Cu					
	12.000	Pervious SCS Cu	i ve NO. E cooffici	ont"			
	0.434 0.100			.enc .+"			
	0.100	PELVIOUS Id/S C	.oeiitttel	I L			

"	8.467 Pervious In	itial abs [.]	traction"			
"	0.015 Impervious	Manning '	n'"			
"	98.000 Impervious	SCS Curve	No."			
"	0.000 Impervious	Runoff co	efficient"			
"	0.100 Impervious	Ia/S coef	ficient"			
"	0.518 Impervious	Initial a	bstraction'	I		
"	0.048	0.000	0.042	0.349 c	.m/sec"	
	Catchment 103	l	Pervious	Impervious	Total Area	"
	Surface Area		0.321	0.000	0.321	hectare"
	Time of concen	tration	17.496	2.333	17.496	minutes"
	Time to Centro	id	114.753	87.102	114.753	minutes"
	Raintall depth		87.079	87.079	87.079	mm"
	Raintall volum	e	2/9.52	0.00	2/9.52	c.m"
	Raintall losse	S 4	49.274	6.793	49.274	mm.
	Runott depth		37.805	80.287	37.805	mm
		• • • • •	121.35	0.00	121.35	C.m
	Runott coettic	ient	0.434	0.000	0.434	
			0.048	0.000	0.048	c.m/sec
	40 HYDROGRAPH Add	кипотт "				
	4 Add Kulloff	0 019	0 012	0 210"		
	40 HVDROGRAPH Con	0.040	10w"	0.549		
		flow"	IOM			
	0.048	0.048	0.048	0.349"		
	40 HYDROGRAPH C	ombine	1"	0.515		
	6 Combine "	0	-			
	1 Node #"					
"	Total Site"					
"	Maximum flow		0.38	39 c.m/se	c"	
"	Hydrograph vol	ume	1378.79	98 c.m"		
"	0.048	0.048	0.048	0.389"		
"	40 HYDROGRAPH Sta	rt - New	Tributary"			
"	2 Start - New	Tributar	у"			
"	0.048	0.000	0.048	0.389"		
"	33 CATCHMENT 104"					
	1 Triangular	SCS"				
	1 Equal lengt	h"				
	1 SCS method"					
	104 To the NW W	etland B"				
	0.000 % Imperviou	s"				
	0.812 lotal Area"					
	80.000 Flow length					
	2.500 UVerland SI	ope				
	0.012 Pervious Ar	ed nath"				
	2 EQQ Denvious 1	ngui opo"				
	2.500 Pervious SI	ope Anos"				
		Area longth"				
	2500 Impervious	slone"				
	2.500 impervious 0.250 Dervious Ma	nning 'n'				
	0.200 FEINIOUS MA	III III III				

"	75.000	Pervious SCS Curve	No."			
"	0.434	Pervious Runoff co	efficient"			
"	0.100	Pervious Ia/S coef	ficient"			
"	8.467	Pervious Initial a	bstraction"			
"	0.015	Impervious Manning	; 'n'"			
"	98.000	Impervious SCS Cur	ve No."			
"	0.000	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	efficient"			
"	0.518	Impervious Initial	abstraction			
"		0.112 0.0	00 0.048	0.389	c.m/sec"	
"	(Catchment 104	Pervious	Impervious	Total Area	a "
"	0	Surface Area	0.812	0.000	0.812	hectare"
"	-	Time of concentration	19.900	2.654	19.900	minutes"
"	-	Time to Centroid	117.773	87.596	117.773	minutes"
"	I	Rainfall depth	87.079	87.079	87.079	mm"
"	I	Rainfall volume	707.08	0.00	707.08	c.m"
"	I	Rainfall losses	49.297	7.107	49.297	mm"
"	I	Runoff depth	37.782	79.972	37.782	mm"
"	I	Runoff volume	306.79	0.00	306.79	c.m"
"	I	Runoff coefficient	0.434	0.000	0.434	п
"	ſ	1aximum flow	0.112	0.000	0.112	c.m/sec"
"	40 H	HYDROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.112 0.1	.12 0.048	0.389"		
"	40 H	HYDROGRAPH Copy to Ou	tflow"			
"	8	Copy to Outflow"				
		0.112 0.1	.12 0.112	0.389"		
	40 H	HYDROGRAPH Combine	1"			
	6	Combine "				
	1	Node #"				
		lotal Site"	0.4	01	11	
	ľ		0.4	91 C.M/S	30	
	l l	a 112 o 1	1085.5	82 C.M		
	20 0		104"	0.491		
	<u>مر</u>	Runoff Totals on E	204 2VTT"			
	د -	INUNUIT TULAIS UN E		л	158 ha	ctano"
	-	Total Impenyious and		4	000 ho	ctare"
	-	Total % impervious area	I	0	.000 net	
	19 1	-XTT"		0		
	I	-/ \ - 1				

Post-Development

"			MIDUSS Output				>"
п			MIDUSS version		Ve	ersion 2.25	rev. 473"
п			MIDUSS created		Sund	day, Februar	ry 7, 2010"
п		10	Units used:				ie METRIC"
п			Job folder:	0:\5	1060\100\Pre	eliminarv De	esign\SWM\"
п				£. (-		ES-SWM Re	enort\Post"
п			Output filename:			2VR - E	
п						Z TK = F	osi c.out ،"
п							A
						(4/2022 -+ /	
	24		Date & lime last use	ea:	8,	4/2023 at 4	4:36:58 PM
	31		ME PARAMETERS				
		5.000	lime Step"				
		180.000	Max. Storm length"				
"		1500.000	Max. Hydrograph"				
"	32	ST	ORM Chicago storm"				
п		1	Chicago storm"				
"		743.000	Coefficient A"				
п		6.000	Constant B"				
п		0.799	Exponent C"				
п		0,400	Fraction R"				
п		180 000	Duration"				
п		1 000	Time step multiplie	o"			
п		1.000 Ma	vinum intoncity	100 /	01 mm/hn		
		Ma		109.4	-OL / / '		
			ocal depth	34.2			
	~ ~	6	002nya Hyarograph	extension	usea in this	5 file"	
	33	CΑ	ICHMENI 201"				
"		1	Triangular SCS"				
"		1	Equal length"				
"		1	SCS method"				
"		201	Controlled Area to W	W.R.7 (Sout	heast)"		
"		81.500	% Impervious"				
п		3.071	Total Area"				
п		30.000	Flow length"				
п		2.000	Overland Slope"				
п		0.568	Pervious Area"				
п		30.000	Pervious length"				
п		2 999	Pervious slope"				
п		2 503	Impervious Area"				
п		2,000	Impervious Area				
п		2 000	Impervious rengen				
		2.000	Impervious siope				
		0.250	Pervious Manning n	и. II			
		/5.000	Pervious SCS Curve i				
		0.176	Pervious Runott coet	Fficient"			
"		0.100	Pervious Ia/S coeff:	icient"			
"		8.467	Pervious Initial abs	straction"			
"		0.015	Impervious Manning	'n'"			
п		98.000	Impervious SCS Curve	e No."			
п		0.841	Impervious Runoff co	pefficient"			
п		0.100	Impervious Ia/S coet	fficient"			
п		0.518	Impervious Initial a	abstraction	п		
п			0.543 0.000	0.000	0.000	c.m/sec"	
п		Ca	itchment 201	Pervious	Impervious	Total Area	п
п			urface Area	0 568	2 502	3 071	hectare"
п			me of concentration	26 270	2,305	3 200	minuter"
п		1 I T :	me to Contraid	125 217	2.209 Q1 765	J. 2 JEA	minutes
п				110.01/	21.202	93.200 24 27C	milliules
		Ка		34.2/6	34.2/0	54.2/b	
		Ra	IIIITAII VOLUME	194./4	85/.89	1027.03	C.M
		Ra	iintall losses	28.252	5.448	9.666	mm

... mm" Runoff depth 6.024 28.829 24.610 п Runoff volume c.m" 34.23 721.55 755.77 ... Runoff coefficient 0.176 0.841 0.718 н п 0.008 Maximum flow 0.542 0.543 c.m/sec" п HYDROGRAPH Add Runoff " 40 п Add Runoff " 4 ... 0.000" 0.543 0.543 0.000 ... POND DESIGN" 54 п Current peak flow c.m/sec" 0.543 п Target outflow 0.708 c.m/sec" п 755.8 Hydrograph volume c.m" п 4. Number of stages" п Minimum water level 399.000 metre" ... 402.190 Maximum water level metre" п 399.000 Starting water level metre" ... Keep Design Data: 1 = True; 0 = False" 0 ... Level Discharge Volume" п 399.000 0.000 0.000" ... 399.300 0.04841 1.01E-05" 401.000 0.4512 1088.490" 402.190 0.5999 1088.490" 1. OUTFLOW PIPE" ... Upstream Downstr'm Pipe Pipe Manning Entry" ... Length Diameter 'n' loss Ke" invert invert 0.500" 399.000 398.800 20.000 0.450 0.013 Peak outflow 0.154 c.m/sec" Maximum level 399.747 metre" c.m" Maximum storage 286.532 Centroidal lag 1.903 hours" п 0.543 0.543 0.154 0.000 c.m/sec" п 1" **HYDROGRAPH** Combine 40 ... Combine " 6 н Node #" 1 ... To W.R.7" ... Maximum flow 0.154 c.m/sec" 753.694 c.m" Hydrograph volume п 0.543 0.543 0.154 0.154" .. HYDROGRAPH Start - New Tributary" 40 п 2 Start - New Tributary" ... 0.543 0.000 0.154 0.154" н 33 CATCHMENT 202" п 1 Triangular SCS" п Equal length" 1 ... 1 SCS method" ... Uncontrolled Area to W.R.7 (Southeast)" 202 ... 68.000 % Impervious" ... Total Area" 0.240 ... 5.000 Flow length" 2.000 Overland Slope" 0.077 Pervious Area" ... Pervious length" 5.000 Pervious slope" 2.000 п 0.163 Impervious Area" п Impervious length" 5.000 ... Impervious slope" 2.000 п 0.250 Pervious Manning 'n'" ... Pervious SCS Curve No." 75.000 ... Pervious Runoff coefficient" 0.175

	0 100	Populaus Ta/S co	officiont				
п	0.100	Pervious 1a/3 co					
п	0.407	Transmissione Manag		1011			
п	0.015		ng n				
	98.000	Impervious SCS C	urve No.	· II			
	0.809	Impervious Runot	T COETTIC	ient			
	0.100	Impervious Ia/S	coetticie	nt"			
	0.518	Impervious Initi	al abstra	ction'		/ II	
		0.040 0	.000	0.154	0.154 0	.m/sec"	
	(Latchment 202	Pervi	ous	Impervious	Iotal Area	
	-	Surface Area	0.0//		0.163	0.240	nectare"
	_	lime of concentrati	on 8.969		0.754	1.513	minutes"
	-	lime to Centroid	114.2	/0	89.306	91.613	minutes"
	ł	Rainfall depth	34.27	b	34.276	34.276	mm"
	H	Rainfall volume	26.32	-	55.94	82.26	c.m
	ł	Rainfall losses	28.27	8	6.551	13.504	mm"
	H	Runoff depth	5.998		2/./25	20.773	mm"
	ŀ	Runott volume	4.61		45.25	49.85	c.m"
	ŀ	Runott coetticient	0.175		0.809	0.606	
	N	laximum flow	0.002		0.040	0.040	c.m/sec"
	40 1	IYDROGRAPH Add Runo	++ "				
	4	Add Runott "			0 4 5 4 1		
		0.040 0	.040	0.154	0.154		
	40 H	AYDROGRAPH Copy to	Out+low"				
	8	Copy to Outflow"			0 4 5 4 1		
	40	0.040 0	.040	0.040	0.154"		
	40 H	IYDROGRAPH Combin	e 1"				
	6	Combine "					
	1	Node #"					
		IO W.R./"			/		
	N	laximum +low		0.16	55 c.m/s€	ec"	
	ŀ	lydrograph volume		803.54	18 c.m"		
		0.040 0	.040	0.040	0.165"		
	40 H	IYDROGRAPH Start -	New Iribu	tary"			
	2	Start - New Irib	utary"		0.445		
		0.040 0	.000	0.040	0.165"		
	33 (AICHMENI 203"					
	1	Iriangular SCS"					
	1	Equal length"					
	1	SCS method"					
	203	Uncontrolled to	W.R.7 (NO	rtneas	st)"		
	53.100	% Impervious					
	0.124	Total Area					
	5.000	Flow length"					
	2.000	Overland Slope"					
	0.058	Pervious Area					
	5.000	Pervious length"					
	2.000	Pervious slope"					
	0.066	Impervious Area	la 11				
	5.000	Impervious lengt	r) "				
п	2.000	Impervious siope	1				
	0.250	Pervious Manning					
	/5.000	Pervious SCS Cur	ve NO."	- س			
п	0.1/5	Pervious Kunott	CUETTICIE	11 . 11			
п	0.100	Pervious Ia/S CO	etticient	ion"			
	8.46/	Pervious Initial	austract	TOU .			
п	0.015	Impervious Manni					
	98.000	Impervious SCS C	urve NO."				
	0.809	impervious kunot	I COETTIC	rent			

		0.100	Impervious Ia/	'S coef	ficient"			
"		0.518	Impervious Ini	itial a	abstraction	п		
			0.016	0.000	0.040	0.165 (c.m/sec"	
		Cat	chment 203		Pervious	Impervious	Total Area	
"		Sur	rface Area		0.058	0.066	0.124	hectare"
"		Tin	ne of concentra	ation	8.969	0.754	2.072	minutes"
		Tin	ne to Centroid		114.270	89.306	93.311	minutes"
		Rai	infall depth		34.276	34.276	34.276	mm"
		Rai	infall volume		19.93	22.57	42.50	c.m"
"		Rai	infall losses		28.278	6.551	16.741	mm"
"		Rur	noff depth		5.998	27.725	17.535	mm"
		Rur	noff volume		3.49	18.26	21.74	c.m"
		Rur	noff coefficier	nt	0.175	0.809	0.512	
		Max	kimum flow		0.001	0.016	0.016	c.m/sec"
	40	HYE	DROGRAPH Add Ru	unoff '	I			
		4	Add Runoff "					
			0.016	0.016	5 0.040	0.165"		
	40	HYE	DROGRAPH Copy t	o Outf	flow"			
		8	Copy to Outflo	ow"				
			0.016	0.016	6 0.01 6	0.165"		
	40	HYE	DROGRAPH Comb	oine	1"			
		6	Combine "					
		1	Node #"					
			To W.R.7"					
		Max	kimum flow		0.1	72 c.m/se	ec"	
		Нус	rograph volume	5	825.2	92 c.m"		
			0.016	0.016	6 0.016	0.172"		
	40	HYE	DROGRAPH Start	- New	Tributary"			
		2	Start - New Ir	ibutar	ry"	0 470"		
			0.016	0.000	0.016	0.1/2"		
	33		Tuionaulan CCC	• 11				
		1	Triangular SCS)				
		1	Equal length					
		201	Uncontrolled t	-0 Wo+1	land A (Sour	thwest)"		
	Δ	204	% Impervious"	.o weti		chwest)		
		0.763	Total Area"					
	2	0.000	Flow length"					
	-	3.000	Overland Slope	' "				
		0.391	Pervious Area'					
	2	20.000	Pervious lengt	:h"				
		3.000	Pervious slope	è				
		0.372	Impervious Are	ea"				
	2	20.000	Impervious ler	ngth"				
		3.000	Impervious slo	ope"				
		0.250	Pervious Manni	ing 'n'	п			
	7	/5.000	Pervious SCS (Curve N	lo."			
		0.176	Pervious Runof	f coef	ficient"			
		0.100	Pervious Ia/S	coeffi	icient"			
		8.467	Pervious Initi	lal abs	straction"			
		0.015	Impervious Mar	ning '	'n'"			
	9	8.000	Impervious SCS	5 Curve	e No."			
		0.841	Impervious Rur	noff co	pefficient"			
		0.100	Impervious Ia/	'S coef	ficient"			
		0.518	Impervious Ini	itial a	abstraction			
			0.086	0.000	0.016	0.172 (c.m/sec"	
		Cat	chment 204		Pervious	Impervious	Total Area	
		Sur	rtace Area		0.391	0.372	0.763	hectare"

"		Tim	e of conc	entratio	n 18.	245	1.534	4.540	minutes"
"		Tim	e to Cent	roid	125	.534	90.158	96.523	minutes"
"		Rai	.nfall dep	th	34.2	276	34.276	34.276	mm"
"		Rai	.nfall vol	ume	133	.90	127.63	261.53	c.m"
"		Rai	nfall los	ses	28.	251	5.462	17.130	mm"
"		Run	off depth		6.0	25	28.815	17.147	mm"
"		Run	off volum	e	23.	54	107.29	130.83	c.m"
"		Run	off coeff	icient	0.1	76	0.841	0.500	н
"		Max	imum flow	1	0.0	97	0.085	0.086	c.m/sec"
	40	HYD	ROGRAPH A	dd Runof	f"				
		4	Add Runof	f "					
			0.08	6 0.	086	0.016	0.172"		
	40	HYD	ROGRAPH C	opy to O	utflow	н			
		8	Copy to O	utflow"					
			0.08	6 0.	086	0.086	0.172"		
	40	HYD	ROGRAPH	Combine	2"				
	-	6	Combine "						
		2	Node #"						
		_	Total Sit	e Area"					
		Мах	imum flow			0.08	86 c.m/s	ec"	
		Hvd	lrograph v	olume		130.82	28 c.m"		
			0.08	6 0.	086	0.086	0.086"		
	40	HYD	ROGRAPH S	tart - N	lew Tri	outarv"			
		2	Start - N	ew Tribu	itarv"				
		-	0.08	6 0.	000	0.086	0.086"		
	33	CAT	CHMENT 20	5"	000	0.000	01000		
		1	Triangula	n 505"					
				ר אר ד					
		1	Foual len	øth"					
		1 1	Equal len	gth" d"					
 	2	1 1 05	Equal len SCS metho	gth" d" led Area	to We	tland B	(Northwest)"	
 	2	1 1 .05	Equal len SCS metho Uncontrol % Impervi	gth" d" led Area	to We [.]	tland B	(Northwest)"	
	2 38.5 0.2	1 1 05 00	Equal len SCS metho Uncontrol % Impervi Total Are	gth" d" led Area ous"	to We	tland B	(Northwest)"	
 	2 38.5 0.2 20.0	1 1 .05 .00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng	gth" d" led Area ous" a" th"	to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0	1 1 .05 .00 .60	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland	gth" d" led Area ous" a" th" Slope"	ı to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0	1 1 .05 .00 .60 .00 .00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious	gth" d" led Area ous" a" th" Slope" Area"	ı to We [.]	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0	1 1 05 00 60 00 00 60 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length"	to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0	1 1 05 00 60 00 60 00 60	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope"	ı to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1	1 1 05 00 60 00 60 60 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area"	ı to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0	1 1 05 00 60 00 60 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length	ı to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0	1 1 05 00 60 00 60 00 60 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length	to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 20.0 3.0	1 1 05 00 60 00 60 00 60 00 00 00 50	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Imperviou Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning	to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 20.0 3.0 20.0 20.0	1 1 05 00 60 00 60 00 60 00 00 00 00 50 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Imperviou Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" slope" s Area" s length s slope" Manning SCS Curv	' to We	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0	1 1 05 00 60 00 60 00 60 00 00 00 00 00 50 00 76	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Pervious Pervious Pervious Pervious Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c	'n'" re No."	tland B	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0 0.1 0.1	1 1 05 00 00 00 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Pervious Pervious Pervious Pervious Pervious Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c	'n'" re No."	ient"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0 0.1 0.1 8.4	1 1 05 00 60 00 60 00 00 60 00 00 00 50 00 50 00 50 00 50 00 67	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial	'n'" 'e No." oeffic: abstra	ient" nt"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 0.1 8.4 0.0	1 1 05 00 60 00 60 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin	'n'" 'e No." oeffic: abstra	tland B ient" nt" ction"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 0.1 8.4 0.0 98.0	1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Imperviou Imperviou Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin	'n'" 'e No." oeffic: abstra g 'n'"	ient" nt" ction"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0 0.1 0.1 8.4 0.0 98.0 0.8	1 1 1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu	'n'" 'e No." oefficie abstra g 'n'" irve No	ient" nt" ction" ."	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0 0.1 8.4 0.0 98.0 0.8 0.1	1 1 1 05 00 60 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ta/S c	'n'" 'e No." coeffic: abstrad g 'n'" rve No coeffic	ient" nt" ction" ." icient"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 1 05 00 60 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Ia/S co	'n'" re No." oeffic: abstra g 'n'" irve No coeff: coeffic:	ient" nt" ction" ." icient" ient"	(Northwest)"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou Imperviou	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Initia 3 0	'n'" 'e No." oeffic: abstra g 'n'" irve No coeffic: l abst 000	ient" nt" ction" ." icient" raction' 0.086	(Northwest)" C.m/sec"	
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Dervious Pervious Pervious Pervious Pervious Conserviou Imperviou Imperviou Imperviou Conserviou Pervious	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Initia 3 0.	'n'" 'e No." oeffic: abstra g 'n'" irve No coeffic: l abst 000 Per	ient" nt" ction" ." icient" raction' 0.086	(Northwest)" c.m/sec" Total Δrea	1
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 05 00 60 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Dervious Pervious Pervious Pervious Conserviou Imperviou Imperviou Imperviou Imperviou Servious Pervious	gth" d" led Area ous" a" th" Slope" Area" slope" s Area" s length s slope" S Area" s length s slope" Manning SCS Curv Runoff c Initial s Mannin s SCS Cu Initial s Mannin s SCS Cu Initial s Runoff s Ia/S co s Initia 3 0.	'n'" 'e No." coeffic: abstrad g 'n'" irve No coeffic: l abstr 000 Perv 0 1	ient" nt" ction" ." icient" raction' 0.086 vious	(Northwest)" c.m/sec" Total Area 0.260	" hectare"
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 05 00 60 00 60 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou Imperviou Concert Pervious	gth" d" led Area ous" a" th" Slope" Area" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Initia 3 0. 5 entratio	'n'" re No." oeffic: abstra g 'n'" irve No coeffi coeffic: l abstr 000 Per 0.1	ient" nt" ction" ." icient" raction' 0.086 vious 50 245	(Northwest 0.086 Impervious 0.100 1.534)" c.m/sec" Total Area 0.260 5.718	" hectare" minutes"
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Dervious Imperviou Imperviou Imperviou Imperviou Coment 20 face Area e of conc	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Initia 3 0. 5 entratio	'n'" 'e No." oeffic: abstra g 'n'" irve No coeffic: l abstr 000 Perv 0.10 n 18.1	ient" nt" ction" ." icient" raction' 0.086 vious 50 245 .534	(Northwest 0.086 Impervious 0.100 1.534 90.158)" c.m/sec" Total Area 0.260 5.718 99.016	" hectare" minutes" minutes"
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.1 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou Imperviou face Area e of conc e to Cent	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S co s Initia 3 0. 5 entratio roid	'n'" 'e No." oeffic: abstrad g'n'" irve No coeffic: l abstr 000 Perv 0.1 001 125 34	ient" nt" ction" ." icient" raction' 0.086 vious 50 245 .534 276	(Northwest 0.086 Impervious 0.100 1.534 90.158 34.276)" c.m/sec" Total Area 0.260 5.718 99.016 34.276	" hectare" minutes" minutes" mm"
	2 38.5 0.2 20.0 3.0 0.1 20.0 3.0 0.1 20.0 3.0 0.2 75.0 0.1 0.1 8.4 0.0 98.0 0.8 0.1 0.5	1 1 1 1 05 00 00 00 00 00 00 00 00 00	Equal len SCS metho Uncontrol % Impervi Total Are Flow leng Overland Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Pervious Imperviou Imperviou Imperviou Imperviou Imperviou face Area ne of conc ne to Cent nfall dep	gth" d" led Area ous" a" th" Slope" Area" length" slope" s Area" s length s slope" Manning SCS Curv Runoff c Ia/S coe Initial s Mannin s SCS Cu s Runoff s Ia/S coe Initial s SCS Cu s Runoff s Ia/S co s Initia 3 0. 5 entratio roid th ume	'n'" 'e No." oefficie abstra g'n'" irve No coeffic i abst 000 Per 0.10 0.10 0.11 001 125 34. 54	ient" nt" ction" ." icient" raction' 0.086 vious 50 245 .534 276 81	(Northwest 0.086 Impervious 0.100 1.534 90.158 34.276 34.31)" c.m/sec" Total Area 0.260 5.718 99.016 34.276 89.12	" hectare" minutes" minutes" mm" C.m"

"		Ru	noff depth	6	.025	28.815	14.799) mm"
n		Ru	noff volume	9	.63	28.84	38.48	c.m"
n.		Ru	noff coefficient	0	.176	0.841	0.432	п
n.		Ма	ximum flow	0	.003	0.023	0.023	c.m/sec"
n.	40	HY	DROGRAPH Add Run	off "				
n		4	Add Runoff "					
n.			0.023	0.023	0.086	0.086'	1	
"	40	HY	DROGRAPH Copy to	Outfl	ow"			
u.		8	Copy to Outflow	11				
n.			0.023	0.023	0.023	0.086'	1	
n.	40	HY	DROGRAPH Combi	ne	2"			
n.		6	Combine "					
u.		2	Node #"					
n.			Total Site Area					
n.		Ма	ximum flow		0.10)9 c.m/s	sec"	
u.		Hy	drograph volume		169.30)6 c.m"		
u.		-	0.023	0.023	0.023	0.109'	1	
n.	40	HY	DROGRAPH Confl	uence	1"			
n.		7	Confluence "					
n		1	Node #"					
u.			To W.R.7"					
n		Ma	ximum flow		0.17	72 c.m/s	sec"	
n		Hy	drograph volume		825.29	92 c.m"		
n		-	0.023	0.172	0.023	0.000'	ı	
"	40	ΗY	DROGRAPH Copy to	Outfl	ow"			
"		8	Copy to Outflow					
n			0.023	0.172	0.172	0.000'	•	
"	40	ΗY	DROGRAPH Combi	ne	2"			
n		6	Combine "					
n		2	Node #"					
n			Total Site Area	"				
n		Ма	ximum flow		0.25	55 c.m/s	sec"	
n		Hy	drograph volume		994.59	97 c.m"		
n			0.023	0.172	0.172	0.255'	1	
п	38	ST.	ART/RE-START TOT	ALS 1"				
п		3	Runoff Totals o	n EXIT	11			
"		To	tal Catchment ar	ea		4	1.458	hectare"
"		То	tal Impervious a	rea		3	3.204	hectare"
"		To	tal % impervious			71	L.879"	
"	19	ΕX	IT"					

"		MIDUSS Output	·>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			FS-SWM Report\Post"
"		Output filename:	5YR - POST C.out"
"		Licensee name:	Α"
"		Company	"
"		Date & Time last used:	8/4/2023 at 4:34:49 PM"
"	31 1	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hvdrograph"	
"	32 5	STORM Chicago storm"	
"	1	Chicago storm"	
п	1593.000	Coefficient A"	
"	11.000	Constant B"	
	0.879	Exponent C"	
	0.400	Eraction R"	
	180,000	Duration"	
	1,000	Time step multiplier"	
		Maximum intensity	139.288 mm/hr"
	1	otal denth	47.265 mm"
	6	005hvd Hydrograph exte	ension used in this file"
	33 0	ATCHMENT 201"	
	1	Triangular SCS"	
	1	Foual length"	
	1	SCS method"	
	201	Controlled Area to W R 7	(Southeast)"
	81,500	% Impervious"	
	3,071	Total Area"	
	30 000	Flow length"	
	2 999	Overland Slope"	
	0 568	Pervious Area"	
	30.000	Pervious length"	
	2 999	Pervious slope"	
	2.000	Impervious Area"	
п	30 000	Impervious length"	
	2 999	Impervious slope"	
п	0 250	Pervious Manning 'n'"	
	75 000	Pervious SCS Curve No "	
	0 257	Pervious Runoff coeffici	ont"
	0.257	Pervious Ta/S coefficien	+"
	Q 167	Pervious Initial abstrac	tion"
	0.407 0 015	Tmpopyious Monning 'n'"	
	0.010	Impervious SCS Curve No.	п
	20.000 070 0	Impervious SCS curve NO.	cient"
	0.079 0 100	Impervious Ta/S coeffici	ont"
	0.100 0 E10	Impervious Inj- Coeffici	ection"
	0.210	TUDE ATORS TUTCTUT UDSCL	

"				0.757	0.000	0.000	0.000	c.m/sec"	
"		Ca	atchmen	t 201		Pervious	Imperviou	ıs Total A	rea "
"		S	urface	Area		0.568	2.503	3.071	hectare'
"		T:	ime of	concentra	ntion	19.131	1.980	3.050	minutes'
"		T:	ime to	Centroid		121.799	88.785	90.843	minutes'
"		Ra	ainfall	depth		47.265	47.265	47.265	mm"
"		Ra	ainfall	volume		268.53	1182.97	1451.50	c.m"
"		Ra	ainfall	losses		35.099	5.742	11.173	mm"
"		R	unoff d	epth		12.166	41.523	36.092	mm"
"		R	unoff v	olume		69.12	1039.27	1108.39	c.m"
"		R	unoff c	oefficien	nt	0.257	0.879	0.764	п
"		Ma	aximum	flow		0.023	0.755	0.757	c.m/sec'
"	40	H	YDROGRA	PH Add Ru	noff '	•			
"		4	Add R	unoff "					
"				0.757	0.757	7 0.000	0.000)"	
"	54	P	OND DES	IGN"					
"		0.757	Curre	nt peak f	low	c.m/sec"			
"		0.708	Targe	t outflow	і с.	.m/sec"			
"		1108.4	Hydro	graph vol	ume	c.m"			
"		4.	Numbe	r of stag	ges"				
"		399.000	Minim	um water	level	metre"			
"		402.190	Maxim	um water	level	metre"			
"		399.000	Start	ing water	' level	l metre"			
"		0	Кеер	Design Da	ta: 1	= True; 0	= False"		
"			Lev	el Discha	irge	Volume"			
"			399.0	00 0.	000	0.000"			
"			399.3	00 0.04	841 1	1.01E-05"			
"			401.0	00 0.4	512 1	1088.490"			
			402.1	90 0.5	999 1	1088.490"			
		1.	OUTFL	OW PIPE"					"
			Upstre	am Downst	r'm	Pipe	Pipe	Manning	Entry"
			inve	rt inv	vert	Length D	iameter	'n'	loss Ke"
		_	399.0	00 398.	800	20.000	0.450	0.013	0.500"
		Pe	eak out	tlow		0.2	21 c.m/	sec"	
		Ma	aximum	Tevel		400.0	28 metr	re	
		Ma	aximum t	storage		466.3	84 C.M		
			entrola	ar rag	757	L.94	49 nours	, 	
	40			5/ 0. DU Comh	/5/	0.221	0.000 C.	m/sec	
	40	п С	rDRUGRA	PH COMU	тпе	T			
		0	Nodo	ne #"					
		Ŧ	ToW	# D 7"					
		M	IU W.	K./ flow		0.2	21 cm/	coc"	
		Ma Li	udnogna	ntow nh volume		1102 1	21 C.III/ 52 c.m'	Sec	
		n <u>j</u>	yurogra	ph vorume a 757	: 0 75 ⁻	7 0 221	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο		
	10	цı		DH Stant	- Now	Tributary"	0.221	-	
	40	ח ז	4700701	- Νοώ Τη	- New	n ibucary			
		۷	Juli	0 757		ע ק (200	Q 221	п	
	33	C		T 202"	0.000	0.221	0.221	-	
	55	1	Trian	, 202 gular SCS	. 11				
		-	II Tall	Para 263	•				

"	1	Equal length"				
"	1	SCS method"				
"	202	Uncontrolled Area	to W.R.7 (So	utheast)"		
"	68.000	% Impervious"				
"	0.240	Total Area"				
"	5.000	Flow length"				
"	2.000	Overland Slope"				
"	0.077	Pervious Area"				
"	5.000	Pervious length"				
"	2.000	Pervious slope"				
"	0.163	Impervious Area"				
"	5.000	Impervious length'	II			
"	2.000	Impervious slope"				
"	0.250	Pervious Manning	'n'"			
"	75.000	Pervious SCS Curve	e No."			
"	0.255	Pervious Runoff co	oefficient"			
"	0.100	Pervious Ia/S coet	fficient"			
"	8.467	Pervious Initial a	abstraction"			
"	0.015	Impervious Manning	g 'n'"			
"	98.000	Impervious SCS Cur	rve No."			
	0.831	Impervious Runoff	coefficient"			
	0.100	Impervious Ia/S co	pefficient"			
	0.518	Impervious Initia	l abstraction			
	01920	0.054 0.0	2 00000 0.221	0.221	c.m/sec"	
	Ca	atchment 202	Pervious	Impervious	s Total Δrea	н
	Su	Inface Area	0.077	0.163	0.240	hectare"
	Ti	me of concentration	n 6 529	0.105	1 415	minutes"
	Ti	me to Centroid	106 382	87 252	89 668	minutes"
	Ra	infall denth	47 265	47 265	47 265	mm"
	Ra	ainfall volume	36 30	77 14	113 44	с m"
	Ra	ainfall losses	35 205	7 998	16 705	mm"
	Ru	unoff denth	12 059	39 266	30 560	mm"
	Ru	noff volume	9.26	64.08	73 34	"
	RU	noff coefficient	9.20	04.00	0 617	
	Ma	vinum flow	0.255	0.051	0.047	
	10 HV	/DROGRADH Add Runoff	e "	0.052	0.054	C.117 SEC
	40 111	Add Runoff "	I			
	4		251 0 221	a 221'	1	
	10 UV	(DPOGPADH Conv + o Out	0,221 u+flow"	0.221		
	40 Ni	Conv to Outflow"				
	0			a 221'	1	
	40 10	U.UJ4 U.U	4-رە.9 1"	0.221		
		Combine "	T			
	0	Compine				
	1					
	Ma		0.0	26	!!	
	Ma	IXIIIUIII TIOW	0.2 1175 7		sec	
	Ну	vurograph Volume	11/5./	שו כ.m		
	40		$0.054 \qquad 0.054$	0.236		
	40 HY	Ctont New Taile	ew inidutary"			
	2	Start - New Iribut	Lary			

"		0.054	0.000	0.054	0.236"		
"	33 CA	TCHMENT 203"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	1	SCS method"					
"	203	Uncontrolled to	W.R.7	7 (Northeas	t)"		
"	53.100	% Impervious"					
"	0.124	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope"					
"	0.058	Pervious Area"					
"	5.000	Pervious length					
	2.000	Pervious slope"					
	0.066	Impervious Area					
	5.000	Impervious leng	th"				
	2.000	Impervious slop	e"				
	0.250	Pervious Mannin	g 'n''				
	75.000	Pervious SCS Cu	rve No	. "			
	0.255	Pervious Runott	coeti	Ficient"			
	0.100	Pervious la/S c	oett10	cient"			
	8.46/	Pervious Initia	1 abst	traction"			
	0.015	Impervious Mann	ing 'r				
	98.000	Impervious SCS	Curve				
	0.831	Impervious Runo	TT COE	etticient			
	0.100	Impervious Ia/S	coeti	Ficient"			
	0.518	Impervious init			0 226	~ ~ /coc"	
	C-	0.022	0.000	0.054	0.230 C	Total Anoa	
	La Cu	inface Anes	r C	PERVIOUS		A 124	hoctopo"
	30 Ti	me of concentrat	ion 6	5 520	0.000	1 025	minutes"
	Ti	me to Centroid	1011 0	106 382	87 252	923 91 33/	minutes"
	Ra	infall denth		17 265	47 265	47 265	mm"
	Ra	infall volume	-	7. <u>4</u> 9	31 12	58 61	c m"
	Ra	infall losses	-	35,205	7,998	20.758	mm"
	Ru	noff depth	-	12.059	39.266	26.506	mm''
"	Ru	noff volume		7.01	25.85	32.87	c.m"
"	Ru	noff coefficient	e	0.255	0.831	0.561	
"	Ma	ximum flow	e	0.004	0.021	0.022	c.m/sec"
"	40 HY	DROGRAPH Add Run	off "				
"	4	Add Runoff "					
"		0.022	0.022	0.054	0.236"		
"	40 HY	DROGRAPH Copy to	Outf]	Low"			
"	8	Copy to Outflow					
"		0.022	0.022	0.022	0.236"		
"	40 HY	DROGRAPH Combi	ne	1"			
"	6	Combine "					
"	1	Node #"					
"		To W.R.7"					
"	Ma	ximum flow		0.24	6 c.m/se	ec"	
"	Ну	drograph volume		1208.66	3 c.m"		

"		0.022 0.0	0.022	0.246"		
"	40 HY	DROGRAPH Start - Ne	w Tributary"			
"	2	Start - New Tribut	ary"			
"		0.022 0.0	00 0.022	0.246"		
"	33 CA	TCHMENT 204"				
"	1	Triangular SCS"				
"	1	Equal length"				
	1	SCS method"				
	204	Uncontrolled to We	tland A (Sou	thwest)"		
	48,800	% Impervious"				
	0.763	Total Area"				
	20,000	Flow length"				
	3 000	Overland Slone"				
	0 391	Pervious Area"				
	20.001	Pervious length"				
	3 000	Pervious slope"				
		Tmpopyious Apos"				
	20.372	Impervious Area				
	20.000	Impervious length				
	0 250	Dopyious Monning '	n'"			
	75 000	Pervious Maining	II No "			
	75.000	Pervious SCS Curve	NO.			
	0.257	Pervious Runott Co				
	0.100	Pervious Ia/S coer	TICIEIL			
	8.467	Pervious initial a				
	0.015	Impervious Manning	; n			
	98.000	Impervious SCS Cur	ve No."			
	0.8/5	Impervious Runott	coefficient"			
	0.100	Impervious Ia/S co	efficient"			
	0.518	Impervious Initial	abstraction		/ II	
	-	0.121 0.0	00 0.022	0.246 0	:.m/sec"	
	Ca	itchment 204	Pervious	Impervious	lotal Area	
	Su	irtace Area	0.391	0.3/2	0.763	hectare"
	Ti 	me of concentration	13.282	1.375	4.181	minutes"
	Ti	me to Centroid	114.600	87.893	94.187	minutes"
	Ra	infall depth	47.265	47.265	47.265	mm"
"	Ra	infall volume	184.64	175.99	360.63	c.m"
"	Ra	infall losses	35.106	5.889	20.848	mm"
	Ru	noff depth	12.159	41.376	26.417	mm"
"	Ru	noff volume	47.50	154.06	201.56	c.m"
"	Ru	noff coefficient	0.257	0.875	0.559	"
"	Ма	ximum flow	0.020	0.117	0.121	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.121 0.1	.21 0.022	0.246"		
"	40 HY	DROGRAPH Copy to Ou	tflow"			
"	8	Copy to Outflow"				
"		0.121 0.1	.21 0.121	0.246"		
"	40 HY	DROGRAPH Combine	2"			
"	6	Combine "				
"	2	Node #"				

"	Total Site Area"				
"	Maximum flow	0.12	21 c.m/se	ec"	
"	Hydrograph volume	201.56	50 c.m"		
"	0.121 0.12	0.121	0.121"		
"	40 HYDROGRAPH Start - New	v Tributary"			
"	2 Start - New Tributa	ary"			
"	0.121 0.00	0.121	0.121"		
"	33 CATCHMENT 205"				
"	1 Triangular SCS"				
"	1 Equal length"				
"	1 SCS method"				
"	205 Uncontrolled Area t	to Wetland B	(Northwest)) "	
"	38.500 % Impervious"		````		
"	0.260 Total Area"				
	20.000 Flow length"				
	3.000 Overland Slope"				
	0.160 Pervious Area"				
	20.000 Pervious length"				
"	3.000 Pervious slope"				
"	0.100 Impervious Area"				
"	20.000 Impervious length"				
"	3.000 Impervious slope"				
"	0.250 Pervious Manning 'n	י"			
"	75.000 Pervious SCS Curve	No."			
"	0.257 Pervious Runoff coe	efficient"			
"	0.100 Pervious Ia/S coeff	ficient"			
"	8.467 Pervious Initial ab	ostraction"			
"	0.015 Impervious Manning	'n'"			
"	98.000 Impervious SCS Curv	/e No."			
"	0.875 Impervious Runoff c	coefficient"			
"	0.100 Impervious Ia/S coe	efficient"			
"	0.518 Impervious Initial	abstraction'	•		
"	0.033 0.00	0.121	0.121 0	.m/sec"	
"	Catchment 205	Pervious	Impervious	Total Area	"
"	Surface Area	0.160	0.100	0.260	hectare"
"	Time of concentration	13.282	1.375	5.179	minutes"
"	Time to Centroid	114.600	87.893	96.425	minutes"
"	Rainfall depth	47.265	47.265	47.265	mm"
"	Rainfall volume	75.58	47.31	122.89	c.m"
"	Rainfall losses	35.106	5.889	23.857	mm"
"	Runoff depth	12.159	41.376	23.407	mm"
"	Runoff volume	19.44	41.42	60.86	c.m"
"	Runoff coefficient	0.257	0.875	0.495	н
"	Maximum flow	0.008	0.032	0.033	c.m/sec"
"	40 HYDROGRAPH Add Runoff	"			
"	4 Add Runoff "				
"	0.033 0.03	33 0.121	0.121"		
"	40 HYDROGRAPH Copy to Out	flow"			
"	8 Copy to Outflow"				
"	0.033 0.03	0.033	0.121"		

"	40	HYDROGRAPH	Combine 2'	ı		
"		5 Combine "				
"		2 Node #"				
"		Total Site	Area"			
"		Maximum flow		0.154	c.m/sec"	
"		Hydrograph vo	lume	262.419	c.m"	
"		0.033	0.033	0.033	0.154"	
"	40	HYDROGRAPH	Confluence	1"		
"		Confluence	п			
"		Node #"				
"		To W.R.7"				
"		Maximum flow		0.246	c.m/sec"	
"		Hydrograph vo	lume	1208.663	c.m"	
"		0.033	0.246	0.033	0.000"	
"	40	HYDROGRAPH Co	py to Outflow	v"		
"		B Copy to Ou	tflow"			
"		0.033	0.246	0.246	0.000"	
"	40	HYDROGRAPH	Combine 2'	ı		
"		5 Combine "				
"		2 Node #"				
"		Total Site	Area"			
"		Maximum flow		0.350	c.m/sec"	
"		Hydrograph vo	lume	1471.083	c.m"	
"		0.033	0.246	0.246	0.350"	
"	38	START/RE-STAR	T TOTALS 1"			
"		8 Runoff Tot	als on EXIT"			
"		Total Catchme	nt area		4.458	hectare"
"		Total Impervi	ous area		3.204	hectare"
"		Total % imper	vious		71.879"	
"	19	EXIT"				
"		MIDUSS Output	>"			
---	----------	---------------------------	---------------------------------------			
"		MIDUSS version	Version 2.25 rev. 473"			
"		MIDUSS created	Sunday, February 7, 2010"			
"	10	Units used:	ie METRIC"			
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"			
"			FS-SWM Report\Post"			
"		Output filename:	10YR - POST C.out"			
"		Licensee name:	Α"			
"		Company	"			
"		Date & Time last used:	8/4/2023 at 4:30:50 PM"			
"	31 1	IME PARAMETERS"				
"	5.000	Time Step"				
"	180.000	Max. Storm length"				
"	1500.000	Max. Hydrograph"				
"	32 5	STORM Chicago storm"				
"	1	Chicago storm"				
"	2221.000	Coefficient A"				
"	12.000	Constant B"				
"	0.908	Exponent C"				
"	0.400	Fraction R"				
"	180.000	Duration"				
"	1.000	Time step multiplier"				
"	Μ	Naximum intensity	169.551 mm/hr"			
"	Г	otal depth	56.290 mm"			
"	6	010hyd Hydrograph exte	nsion used in this file"			
"	33 C	CATCHMENT 201"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	1	SCS method"				
"	201	Controlled Area to W.R.7	(Southeast)"			
"	81.500	% Impervious"				
"	3.071	Total Area"				
"	30.000	Flow length"				
"	2.000	Overland Slope"				
"	0.568	Pervious Area"				
"	30.000	Pervious length"				
"	2.000	Pervious slope"				
"	2.503	Impervious Area"				
"	30.000	Impervious length"				
"	2.000	Impervious slope"				
"	0.250	Pervious Manning 'n'"				
"	75.000	Pervious SCS Curve No."				
"	0.306	Pervious Runoff coefficio	ent"			
"	0.100	Pervious Ia/S coefficien	t"			
"	8.467	Pervious Initial abstrac	tion"			
"	0.015	Impervious Manning 'n'"				
"	98.000	Impervious SCS Curve No.	n			
"	0.894	Impervious Runoff coeffi	cient"			
"	0.100	Impervious Ia/S coefficio	ent"			
"	0.518	Impervious Initial abstra	action"			

"		0.946	0.000	0.000	0.000	c.m/sec"	
"		Catchment 201	F	Pervious	Impervious	Total Are	a "
"		Surface Area	(0.568	2.503	3.071	hectare"
"		Time of concent	tration :	16.132	1.822	2.852	minutes"
"		Time to Centro	id 1	116.081	87.573	89.626	minutes"
"		Rainfall depth	I.	56.290	56.290	56.290	mm"
"		Rainfall volum	e 3	319.80	1408.87	1728.67	c.m"
"		Rainfall losse	s 3	39.079	5.945	12.075	mm"
"		Runoff depth	-	17.211	50.345	44.215	mm"
"		Runoff volume	9	97.78	1260.07	1357.85	c.m"
"		Runoff coeffic	ient 0	0.306	0.894	0.785	
"		Maximum flow	6	0.039	0.940	0.946	c.m/sec"
"	40	HYDROGRAPH Add	Runoff "				
"		4 Add Runoff					
"		0.946	0.946	0.000	0.000"		
"	54	POND DESIGN"					
	0.94	6 Current pea	k flow	c.m/sec"			
	0.70	8 Target outf	low c.r	n/sec"			
	1357.	9 Hydrograph	volume	c.m"			
	4	. Number of s	tages"				
	399.00	0 Minimum wat	er level	metre"			
	402.19	0 Maximum wat	er level	metre"			
	399.00	0 Starting Wa	ter level	metre"	[]]		
		o keep Design	Data: I =	= irue; 0 =	= False		
			charge	volume			
		200,200,0	0.000	0.000			
		101 000 U	.04041 1 0 1512 10	.01E-05			
		401.000	0.4312 10 0 5000 10	288,490			
	1	AUTELOW PTP	F"	588.490			
	-	Unstream Dow	∟ nstr'm	Pine	Pine M	lanning	Entry"
		invert	invert	length Di	iameter .	'n' 1	oss Ke"
		399,000 3	98.800	20.000	0.450	0.013	0.500"
"		Peak outflow		0.27	72 c.m/s	ec"	0.900
"		Maximum level		400.24	12 metre	"	
"		Maximum storag	e	603.05	55 c.m"		
"		Centroidal lag		1.98	31 hours"		
"		0.946	0.946	0.272	0.000 c.m	/sec"	
"	40	HYDROGRAPH C	ombine	1"			
"		6 Combine "					
"		1 Node #"					
"		To W.R.7"					
"		Maximum flow		0.27	72 c.m/s	ec"	
"		Hydrograph vol	ume	1358.81	L6 c.m"		
"		0.946	0.946	0.272	0.272"		
"	40	HYDROGRAPH Sta	rt - New ⁻	Tributary"			
"		2 Start - New	Tributary	y"			
		0.946	0.000	0.272	0.272"		
	33	CATCHMENT 202"					
"		1 Triangular	SCS"				

"	1	Equal length"				
"	1	SCS method"				
"	202	Uncontrolled Area	to W.R.7 (So	utheast)"		
"	68.000	% Impervious"				
"	0.240	Total Area"				
"	5.000	Flow length"				
"	2.000	Overland Slope"				
"	0.077	Pervious Area"				
	5.000	Pervious length"				
	2.000	Pervious slope"				
	0.163	Impervious Area"				
	5.000	Impervious length"				
	2.000	Impervious slope"				
	0.250	Pervious Manning	n'"			
	/5.000	Pervious SCS Curve	NO."			
	0.305	Pervious Runott co	efficient"			
	0.100	Pervious Ia/S coef	+1Clent"			
	8.46/	Pervious initial a				
	00.00	Impervious Manning	s II			
	90.000	Impervious SCS Cur Imponyious Pupoff	ve NO.			
	0.830	Impervious Kunorr	officient"			
	0.100	Impervious Ia/S co	abstraction			
	0.510		100 0 272	0 272	c m/sec"	
	Ca	atchment 202	Pervious	Impervious	: Total Δrea	н
	Su	Inface Area	0.077	0.163	0.240	hectare"
	Ti	me of concentration	5.505	0.622	1.337	minutes"
	Ti	me to Centroid	102.737	86.219	88,639	minutes"
	Ra	ainfall depth	56.290	56.290	56,290	mm"
"	Ra	ainfall volume	43.23	91.87	135.10	c.m"
"	Ra	ainfall losses	39.128	9.242	18.806	mm''
"	Ru	unoff depth	17.162	47.048	37.485	mm"
"	Ru	inoff volume	13.18	76.78	89.96	c.m"
"	Ru	noff coefficient	0.305	0.836	0.666	н
"	Ma	aximum flow	0.008	0.064	0.068	c.m/sec"
"	40 HY	/DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.068 0.0	0.272	0.272'	I	
"	40 HY	DROGRAPH Copy to Ou	itflow"			
	8	Copy to Outflow"			_	
		0.068 0.0	0.068	0.272'	1	
	40 HY	/DROGRAPH Combine	1"			
	6	Combine "				
	1	Node #"				
	Ma		0.0	01		
	Ma	AND	0.2 1440 7	91 C.M/S	sec	
	Ну	a aco a a vurographi votume	1448./			
	<u>۱۵</u>	U.UOO U.U NRAGRAPH Stant - No	w Tributany"	0.291		
	יד סד סד סד	Start - Now Tribut	arv"			
	Ζ	Juli - New Hildu				

"		0.068	0.000	0.068	0.291"		
"	33 CA	TCHMENT 203"					
"	1	Triangular SCS'					
"	1	Equal length"					
"	1	SCS method"					
"	203	Uncontrolled to	W.R.	7 (Northeas	t)"		
"	53.100	% Impervious"					
"	0.124	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope'	1				
	0.058	Pervious Area"					
	5.000	Pervious length	า"				
	2.000	Pervious slope					
	0.066	Impervious Area	a"				
	5.000	Impervious leng	gth"				
	2.000	Impervious slop	e"				
	0.250	Pervious Mannir	ng 'n'				
	75.000	Pervious SCS Cu	irve N	0."			
	0.305	Pervious Runoti	- coet	ficient"			
	0.100	Pervious Ia/S d	coett1	cient"			
	8.46/	Pervious Initia	al abs	traction"			
	0.015	Impervious Manr	iing '	n [·] ··			
	98.000	Impervious SCS	Curve	NO."			
	0.836	Impervious Rund		etticient			
	0.100	Impervious Ia/S	o coet	ficient" hatua ati an "			
	0.518	Impervious Init			0 201 /	~ ~ / c o c "	
	Ca	0.020 tchmont 202	0.000		U.291 (Total Anoa	
	Ca	nface Anea				A 124	hoctopo"
	Ju Ti	me of concentrat	ion	5 505	0.000	1 912	minutes"
	ι_ Τi	me to Centroid	.1011	102 737	86 219	1.012 90 211	minutes
	Ra	infall denth		56 290	56 290	56 290	mm"
	Ra	infall volume		32 74	37 06	69 80	c m"
	Ra	infall losses		39 128	9 242	23 259	mm"
	Ru	noff denth		17.162	47.048	33.032	mm"
	Ru	noff volume		9.98	30.98	40.96	c.m"
	Ru	noff coefficient	_	0.305	0.836	0.587	
"	Ма	ximum flow	-	0.006	0.026	0.028	c.m/sec"
"	40 HY	DROGRAPH Add Rur	noff "				
"	4	Add Runoff "					
"		0.028	0.028	0.068	0.291"		
"	40 HY	DROGRAPH Copy to	0utf	low"			
"	8	Copy to Outflow	v''				
"		0.028	0.028	0.028	0.291"		
"	40 HY	DROGRAPH Combi	ine	1"			
n	6	Combine "					
n	1	Node #"					
"		To W.R.7"					
n	Ма	ximum flow		0.30	1 c.m/se	°C"	
"	Ну	drograph volume		1489.73	8 c.m"		

"		0.028 0.0	28 0.028	0.301"		
"	40 HY	′DROGRAPH Start - Ne	w Tributary"			
"	2	Start - New Tribut	ary"			
"		0.028 0.0	00 0.028	0.301"		
"	33 CA	TCHMENT 204"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	1	SCS method"				
"	204	Uncontrolled to We	tland A (Sou [.]	thwest)"		
"	48.800	% Impervious"		·		
"	0.763	Total Area"				
"	20.000	Flow length"				
"	3.000	Overland Slope"				
"	0.391	Pervious Area"				
"	20.000	Pervious length"				
"	3.000	Pervious slope"				
"	0.372	Impervious Area"				
"	20.000	Impervious length"				
"	3.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious SCS Curve	No."			
"	0.306	Pervious Runoff co	efficient"			
"	0.100	Pervious Ia/S coef	ficient"			
"	8.467	Pervious Initial a	bstraction"			
"	0.015	Impervious Manning	'n'"			
"	98.000	Impervious SCS Cur	ve No."			
"	0.889	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	efficient"			
"	0.518	Impervious Initial	abstraction			
"		0.153 0.0	00 0.028	0.301 0	.m/sec"	
"	Ca	tchment 204	Pervious	Impervious	Total Area	"
"	Su	irface Area	0.391	0.372	0.763	hectare"
"	Ti	me of concentration.	11.199	1.265	3.901	minutes"
"	Ti	me to Centroid.	109.843	86.789	92.906	minutes"
"	Ra	infall depth	56.290	56.290	56.290	mm"
"	Ra	infall volume	219.90	209.59	429.49	c.m"
"	Ra	infall losses	39.065	6.254	23.053	mm"
"	Ru	noff depth	17.226	50.036	33.237	mm"
"	Ru	noff volume	67.29	186.31	253.60	c.m"
"	Ru	noff coefficient	0.306	0.889	0.590	
"	Ma	iximum flow	0.031	0.146	0.153	c.m/sec"
"	40 HY	DROGRAPH Add Runoff	"			
"	4	Add Runoff "				
"		0.153 0.1	53 0.028	0.301"		
"	40 HY	DROGRAPH Copy to Ou	tflow"			
	8	Copy to Outflow"				
		0.153 0.1	53 0.153	0.301"		
	40 HY	DROGRAPH Combine	2"			
	6	Combine "				
	2	Node #"				

"	Total Site Area'	I				
"	Maximum flow		0.15	3 c.m/se	c"	
"	Hydrograph volume		253.60	0 c.m"		
"	0.153 0	.153	0.153	0.153"		
"	40 HYDROGRAPH Start -	New Tribu	itary"			
"	2 Start - New Trib	outary"				
"	0.153 0	000.000	0.153	0.153"		
"	33 CATCHMENT 205"					
"	1 Triangular SCS"					
"	1 Equal length"					
"	1 SCS method"					
"	205 Uncontrolled Are	ea to Wet]	and B	(Northwest)	, "	
"	38.500 % Impervious"					
"	0.260 Total Area"					
"	20.000 Flow length"					
"	3.000 Overland Slope"					
"	0.160 Pervious Area"					
"	20.000 Pervious length	l de la constante de				
"	3.000 Pervious slope"					
"	0.100 Impervious Area'	1				
"	20.000 Impervious lengt	:h"				
"	3.000 Impervious slope	2"				
	0.250 Pervious Manning	g 'n'"				
"	75.000 Pervious SCS Cur	rve No."				
"	0.306 Pervious Runoff	coefficie	ent"			
	0.100 Pervious Ia/S co	pefficient				
	8.467 Pervious Initial	abstract	ion"			
	0.015 Impervious Manni	ng 'n'"	_			
	98.000 Impervious SCS (urve No.'				
	0.889 Impervious Runof	f coeffic	ient"			
	0.100 Impervious Ia/S	coetticie	ent"			
	0.518 Impervious Initi	al abstra	iction"	0 4 5 0	/ I	
	0.042 6	0.000	0.153	- 0.153 c	.m/sec"	
	Catchment 205	Pervi	Lous	Impervious	Iotal Area	
	Surface Area	0.160	<i>)</i>	0.100	0.260	nectare
	Time of Contentral	100 11.15		1.265	4.790	minutes
	lime to Centrola	109.8	343	86.789	94.969	minutes
	Rainfall volume	50.25	00	50.290	146 25	
		20.00		6 7EA	140.55	C.III
	Rainfail 105565 Runoff donth	17 22		50.024	20.452	
	Runoff volume	27 5/	1	50.050	77 63	
	Runoff coefficient	0 306	+	0 880	0 530	
	Maximum flow	0.500	2	0.005	0.000	c m/sec"
	40 HYDROGRAPH Add Runc	0.01. hff "	•		U.UT2	
	Δ Δdd Runoff "					
	9.047 Ø	0.042	0.153	0.153"		
	40 HYDROGRAPH Conv to	Outflow"		0.100		
	8 Copy to Outflow"	1				
"	0.042	.042	0.042	0.153"		

"	40	HYDROGRAPH Combine 2"
"		5 Combine "
"		2 Node #"
"		Total Site Area"
"		Maximum flow 0.195 c.m/sec"
"		Hydrograph volume 331.230 c.m"
		0.042 0.042 0.042 0.195"
	40	HYDROGRAPH Confluence 1"
		7 Confluence "
		1 Node #"
"		To W.R.7"
"		Maximum flow 0.301 c.m/sec"
"		Hydrograph volume 1489.738 c.m"
"		0.042 0.301 0.042 0.000"
"	40	HYDROGRAPH Copy to Outflow"
"		B Copy to Outflow"
"		0.042 0.301 0.301 0.000"
"	40	HYDROGRAPH Combine 2"
"		5 Combine "
"		2 Node #"
"		Total Site Area"
"		Maximum flow 0.439 c.m/sec"
"		Hydrograph volume 1820.968 c.m"
"		0.042 0.301 0.301 0.439"
"	38	START/RE-START TOTALS 1"
"		3 Runoff Totals on EXIT"
"		Total Catchment area 4.458 hectare"
"		Total Impervious area 3.204 hectare"
		Total % impervious 71.879"
"	19	EXIT"

"		MIDUSS Output	·····>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			FS-SWM Report\Post"
"		Output filename:	25YR - POST C.out"
"		Licensee name:	Α"
"		Company	п
"		Date & Time last used:	8/4/2023 at 4:28:29 PM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 5	TORM Chicago storm"	
"	1	Chicago storm"	
"	3158.000	Coefficient A"	
"	15.000	Constant B"	
"	0.936	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	Μ	laximum intensity	191.557 mm/hr"
"	T	otal depth	68.266 mm"
"	6	025hyd Hydrograph exte	ension used in this file"
"	33 C	ATCHMENT 201"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	201	Controlled Area to W.R.7	7 (Southeast)"
"	81.500	% Impervious"	
"	3.071	Total Area"	
"	30.000	Flow length"	
"	2.000	Overland Slope"	
"	0.568	Pervious Area"	
"	30.000	Pervious length"	
"	2.000	Pervious slope"	
"	2.503	Impervious Area"	
"	30.000	Impervious length"	
"	2.000	Impervious slope"	
"	0.250	Pervious Manning 'n'"	
"	75.000	Pervious SCS Curve No."	
	0.362	Pervious Runoff coeffici	ient"
	0.100	Pervious Ia/S coefficier	nt"
"	8.467	Pervious Initial abstrac	ction"
	0.015	Impervious Manning 'n'"	
	98.000	Impervious SCS Curve No.	."
	0.910	Impervious Runoff coeffi	icient"
	0.100	Impervious Ia/S coeffici	ient"
"	0.518	Impervious Initial abstr	raction"

"		1.113	0.000	0.000	0.000	c.m/sec"	
"	(Catchment 201	I	Pervious	Impervious	Total Area	a "
"	0	Surface Area	(0.568	2.503	3.071	hectare"
"	-	Time of concentra	ation :	14.123	1.728	2.754	minutes"
"	-	Fime to Centroid		112.217	86.929	89.023	minutes"
"	I	Rainfall depth	(68.266	68.266	68.266	mm"
"	I	Rainfall volume	-	387.84	1708.61	2096.46	c.m"
"	I	Rainfall losses	4	43.560	6.143	13.065	mm"
"	I	Runoff depth		24.707	62.124	55.202	mm"
"	I	Runoff volume		140.37	1554.87	1695.24	c.m"
"	I	Runoff coefficier	nt (0.362	0.910	0.809	
"	I	Aaximum flow	(0.062	1.102	1.113	c.m/sec"
"	40 H	HYDROGRAPH Add Ru	unoff "				
"	4	Add Runoff "					
"		1.113	1.113	0.000	0.000"		
"	54 I	POND DESIGN"					
"	1.113	Current peak f	flow	c.m/sec"			
"	0.708	Target outflow	v c.r	n/sec"			
"	1695.2	Hydrograph vol	Lume	c.m"			
"	4.	Number of stag	ges"				
	399.000	Minimum water	level	metre"			
	402.190	Maximum water	level	metre"			
	399.000	Starting water	level	metre"	"		
	0	Keep Design Da	ata: 1 =	= Irue; 0 =	= False"		
		Level Discha	arge	Volume"			
		399.000 0.	.000	0.000			
		399.300 0.04	4841 I 1510 1/	.01E-05			
		401.000 0.4	+512 I	088.490			
	1	402.190 0.1	10999 I	088.490			
	1.	UUIFLUW PIPE		Dino	Dino M	anning	Entny
п		invont in	(ont	Pipe	pipe m	anning 'n' la	EIILI'Y
			800	20 000		0 013	0 500"
		Deek outflow		20.000	0.450 21 cm/s	0.015 oc"	0.500
	1	Aavimum level		100.0	$\begin{array}{cccc} 0 & \text{c.m/s} \\ 0 & \text{matra} \end{array}$	"	
	1	Maximum storage		767 64	16 cm"		
	, (Centroidal lag		2 90	hours"		
		1.113 1.	113	0.331	0.000 c.m	/sec"	
	40 1	HYDROGRAPH Com	pine	1"		, 500	
"	6	Combine "		-			
"	1	Node #"					
"		To W.R.7"					
"	1	Maximum flow		0.33	31 c.m/s	ec"	
"	ł	Hydrograph volume	2	1698.61	L8 c.m"		
"		1.113	1.113	0.331	0.331"		
"	40 I	HYDROGRAPH Start	- New	Tributary"			
"	2	Start - New Tr	ributar	y"			
"		1.113	0.000	0.331	0.331"		
"	33 (CATCHMENT 202"					
"	1	Triangular SCS	5"				
		-					

"	1	Equal length"				
"	1	SCS method"				
"	202	Uncontrolled Area	a to W.R.7 (S	Southeast)"		
"	68.000	% Impervious"				
"	0.240	Total Area"				
"	5.000	Flow length"				
"	2.000	Overland Slope"				
"	0.077	Pervious Area"				
	5.000	Pervious length"				
	2.000	Pervious slope"				
	0.163	Impervious Area"				
	5.000	Impervious length	n" "			
	2.000	Impervious slope				
	0.250	Pervious Manning	'n'"			
	/5.000	Pervious SCS Curv	ve No."			
	0.361	Pervious Runott (coefficient"			
	0.100	Pervious Ia/S coe	efficient"			
	8.40/	Tervious Inicial	abstraction			
	00.00		ig ri			
	90.000	Impervious SCS CC	f coofficion	L 11		
	0.845	Impervious Kullori	coefficient"			
	0.100	Impervious Ia/S (Impervious Initi:	al abstractio	מר"		
	0.910	0 079 0		21 0 3 3 1	c m/sec"	
	Ca	atchment 202	Pervious	Tmnerviou	s Total Area	
	Su	Inface Area	0.077	0.163	0.240	hectare"
	Ti	me of concentration	on 4.820	0.590	1.299	minutes"
	Ti	me to Centroid	100.624	85.735	88.230	minutes"
	Ra	ainfall depth	68.266	68.266	68.266	mm"
"	Ra	infall volume	52.43	111.41	163.84	c.m"
"	Ra	infall losses	43.648	10.724	21.260	mm"
"	Ru	unoff depth	24.618	57.542	47.006	mm"
"	Ru	noff volume	18.91	93.91	112.82	c.m"
"	Ru	noff coefficient	0.361	0.843	0.689	"
"	Ма	ximum flow	0.012	0.073	0.079	c.m/sec"
"	40 HY	DROGRAPH Add Runot	ff "			
"	4	Add Runoff "				
"		0.079 0.	.079 0.33	31 0.331		
"	40 HY	DROGRAPH Copy to (Outflow"			
	8	Copy to Outflow"				
"		0.079 0.	.079 0.03	79 0.331	"	
	40 HY	DROGRAPH Combine	e 1"			
	6	Combine "				
	1	Node #"				
		IO W.R./"		255 (
	Ма	IXIMUM TIOW	0	.355 C.m/	sec	
	Ну	urograph Volume	1811	.433 C.M ["]		
	10 LV		.0.0 V.0.	ללניש פי יי		
	י+ט חי ר	Stant - New Inity	vew introutary	y .		
	Z	Juli - New IPIDU	ucary			

"		0.079	0.000	0.079	0.355"		
"	33 CA	TCHMENT 203"					
"	1	Triangular SCS	•				
"	1	Equal length"					
"	1	SCS method"					
"	203	Uncontrolled to	. W.R.	7 (Northeas	st)"		
"	53.100	% Impervious"		·			
"	0.124	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope'	•				
"	0.058	Pervious Area"					
"	5.000	Pervious length	י"				
"	2.000	Pervious slope'	ı				
"	0.066	Impervious Area	a"				
	5.000	Impervious leng	th"				
	2.000	Impervious slow	be"				
	0.250	Pervious Mannir	າອ 'n'				
	75.000	Pervious SCS C	irve N	lo."			
	0.361	Pervious Runoff	F coef	ficient"			
	0.100	Pervious Ta/S (oeffi	cient"			
	8.467	Pervious Initia	al abs	traction"			
	0.015	Impervious Man	ning '	n'"			
	98 000	Impervious SCS	Curve	No "			
	0.843	Impervious Rund	off co	efficient"			
	0.015	Impervious Ta/9	S coef	ficient"			
	0.100	Impervious Init	ial a	hstraction'			
	0.910	0 034	0 000	0 0 079	0 355 0	m/sec"	
	Ca	t_{chment} 203	0.000	Pervious	Impervious	Total Area	
	Cu Su	rface Area		0 058	0 066	0 12/	hectare"
	Ju Ti	me of concentrat	ion	1 820	0.000	1 750	minutes"
	Ti	me to Centroid	.1011	100 624	85 735	20 21 2	minutes"
	Ra	infall denth		68 266	68 266	68 266	mm"
	Ra	infall volume		39 70	11 95	84 65	 c m"
	Ra	infall losses		13 648	10 724	26 166	c
	Na Pu	noff donth		43.048 24 618	57 542	20.100 12 101	
	Ru	noff volume		1/ 22	37 80	52 20	
	Ru	noff coefficient	_	0 361	0 8/3	0 617	
	Ku Ma	vinum flou	-	0.301	0.045	0.01/	c m/coc"
		DEUCEVER VAG EN	off "	0.009	0.030	0.034	C.III/SEC
	40 ПТ	Add Pupoff "	1011				
	4		0 02/	0 0 0 70	0 255"		
	10 UV	DPOCRADE Conv +	0.054		0.333		
	40 NT	Conv to Outflow	,"	IOW			
	0		v 0 021	0 0 0 2 4	0 255"		
	10 UV		0.054 ino	1"	0.333		
		Combine "	Life	T			
	0	Nodo #"					
	T						
	Ma	IU W.K./		0.00	7 6 m/c		
	Ма	ATHINH TION		1962 67	ov c•m/S€		
	Ну	urograph volume		T\$P?'63	oo C.M"		

"		0.034 0.0	0.034 0.034	0.367"		
"	40 HY	DROGRAPH Start - Ne	ew Tributary"			
"	2	Start - New Tribut	tary"			
"		0.034 0.0	0.034	0.367"		
"	33 CA	TCHMENT 204"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	1	SCS method"				
"	204	Uncontrolled to We	etland A (Sou [.]	thwest)"		
"	48.800	% Impervious"	·	·		
"	0.763	Total Area"				
"	20.000	Flow length"				
"	3.000	Overland Slope"				
"	0.391	Pervious Area"				
"	20.000	Pervious length"				
"	3.000	Pervious slope"				
"	0.372	Impervious Area"				
"	20.000	Impervious length	I			
"	3.000	Impervious slope"				
"	0.250	Pervious Manning	'n'"			
"	75.000	Pervious SCS Curve	e No."			
"	0.360	Pervious Runoff co	pefficient"			
"	0.100	Pervious Ia/S coet	fficient"			
"	8.467	Pervious Initial a	abstraction"			
"	0.015	Impervious Manning	g 'n'"			
"	98.000	Impervious SCS Cur	rve No."			
"	0.902	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	pefficient"			
"	0.518	Impervious Initia	l abstraction	11		
"		0.182 0.6	0.034	0.367 (:.m/sec"	
"	Ca	tchment 204	Pervious	Impervious	Total Area	п
"	Su	irface Area	0.391	0.372	0.763	hectare"
"	Ti	me of concentration	n 9.805	1.200	3.740	minutes"
"	Ti	me to Centroid.	106.838	86.241	92.322	minutes"
"	Ra	infall depth	68.266	68.266	68.266	mm"
"	Ra	infall volume	266.69	254.19	520.87	c.m"
"	Ra	infall losses	43.673	6.675	25.618	mm"
"	Ru	noff depth	24.593	61.591	42.648	mm"
"	Ru	noff volume	96.07	229.33	325.40	c.m"
	Rı	noff coefficient	0.360	0.902	0.625	
	Ma	iximum flow	0.049	0.169	0.182	c.m/sec"
	40 HY	DROGRAPH Add Runof	F "			
	4	Add Runoff "				
		0.182 0.1	182 0.034	0.367"		
	40 HY	DROGRAPH Copy to Ou	utflow"			
	8	Copy to Outflow"		0.045"		
		0.182 0.1	182 0.182	0.367"		
	40 HY	DRUGRAPH Combine	2"			
	6	Combine "				
••	2	NODE #"				

"	Tot	al Site Area'	I				
"	Maximu	m flow		0.18	32 c.m/se	ec"	
"	Hydrog	raph volume		325.40	94 c.m"		
"		0.182 0	.182	0.182	0.182"		
"	40 HYDROG	RAPH Start -	New Trib	utary"			
"	2 Sta	rt - New Trib	outary"				
"		0.182 0	.000	0.182	0.182"		
"	33 CATCHM	ENT 205"					
"	1 Tri	angular SCS"					
"	1 Equ	al length"					
"	1 SCS	method"					
"	205 Unc	ontrolled Are	ea to Wet	land B	(Northwest))"	
"	38.500 % I	mpervious"					
"	0.260 Tot	al Area"					
"	20.000 Flo	w length"					
"	3.000 Ove	rland Slope"					
"	0.160 Per	vious Area"					
"	20.000 Per	vious length'	I				
"	3.000 Per	vious slope"					
"	0.100 Imp	ervious Area'	I				
"	20.000 Imp	ervious lengt	:h"				
"	3.000 Imp	ervious slope	è"				
"	0.250 Per	vious Manning	g 'n'"				
"	75.000 Per	vious SCS Cur	ve No."				
"	0.360 Per	vious Runoff	coeffici	ent"			
"	0.100 Per	vious Ia/S co	pefficien	t"			
"	8.467 Per	vious Initial	abstrac	tion"			
"	0.015 Imp	ervious Manni	ng 'n'"				
"	98.000 Imp	ervious SCS (Curve No.	II.			
"	0.902 Imp	ervious Runof	f coeffi	cient"			
"	0.100 Imp	ervious Ia/S	coeffici	ent"			
"	0.518 Imp	ervious Initi	al abstr	action"	1		
"		0.051 0	000.000	0.182	0.182 0	c.m/sec"	
"	Catchm	ent 205	Perv	ious	Impervious	Total Area	"
	Surfac	e Area	0.16	9	0.100	0.260	hectare"
"	Time o	f concentrati	on 9.80	5	1.200	4.551	minutes"
	Time t	o Centroid	106.	838	86.241	94.262	minutes"
	Rainfa	ll depth	68.2	56	68.266	68.266	mm"
	Rainfa	ll volume	109.	16	68.33	177.49	c.m"
	Rainfa	ll losses	43.6	73	6.675	29.429	mm"
	Runott	depth	24.5	93	61.591	38.837	mm"
	Runott	volume	39.3	2	61.65	100.98	c.m"
	Runoff	coetticient	0.36	2	0.902	0.569	
	Maximu	m tiow	0.02	0	0.045	0.051	c.m/sec"
	40 HYDROG	KAPH Add Rund	DT† "				
	4 Add	KUNOTT "	0.051	0 100	0 402"		
			0.451	0.182	0.182"		
	40 HYDROG	KAPH COPY TO	UUCTIOW"				
	ъ сор		051	0 051	A 102"		
		ערש.ש	דרש.ו	0.071	V. 10Z		

"	40	HYDROGRAPH Combine 2"	
"		6 Combine "	
"		2 Node #"	
"		Total Site Area"	
"		Maximum flow 0.233 c.m/se	ec"
"		Hvdrograph volume 426.380 c.m"	
"		0.051 0.051 0.051 0.233"	
"	40	HYDROGRAPH Confluence 1"	
"		7 Confluence "	
"		1 Node #"	
"		To W.R.7"	
"		Maximum flow 0.367 c.m/se	2C"
"		Hydrograph volume 1863.638 c.m"	
"		0.051 0.367 0.051 0.000"	
"	40	HYDROGRAPH Copy to Outflow"	
"		8 Copy to Outflow"	
"		0.051 0.367 0.367 0.000"	
"	40	HYDROGRAPH Combine 2"	
"		6 Combine "	
"		2 Node #"	
"		Total Site Area"	
"		Maximum flow 0.545 c.m/se	2C"
"		Hydrograph volume 2290.018 c.m"	
"		0.051 0.367 0.367 0.545"	
"	38	START/RE-START TOTALS 1"	
"		3 Runoff Totals on EXIT"	
"		Total Catchment area 4.	.458 hectare"
"		Total Impervious area 3.	.204 hectare"
"		Total % impervious 71.	.879"
"	19	EXIT"	

"		MIDUSS Output	>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			FS-SWM Report\Post"
"		Output filename:	50YR - POST C.out"
"		Licensee name:	Α"
"		Company	п
"		Date & Time last used:	8/4/2023 at 4:25:36 PM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 5	STORM Chicago storm"	
"	1	Chicago storm"	
"	3886.000	Coefficient A"	
"	16.000	Constant B"	
"	0.950	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	Μ	Naximum intensity	215.802 mm/hr"
"	Т	otal depth	77.647 mm"
"	6	050hyd Hydrograph exte	nsion used in this file"
"	33 C	ATCHMENT 201"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	201	Controlled Area to W.R.7	(Southeast)"
"	81.500	% Impervious"	
"	3.071	Total Area"	
"	30.000	Flow length"	
"	2.000	Overland Slope"	
"	0.568	Pervious Area"	
"	30.000	Pervious length"	
"	2.000	Pervious slope"	
"	2.503	Impervious Area"	
"	30.000	Impervious length"	
"	2.000	Impervious slope"	
"	0.250	Pervious Manning 'n'"	
"	75.000	Pervious SCS Curve No."	
"	0.399	Pervious Runoff coeffici	ent"
"	0.100	Pervious Ia/S coefficien	t"
"	8.467	Pervious Initial abstrac	tion"
"	0.015	Impervious Manning 'n'"	
"	98.000	Impervious SCS Curve No.	п
"	0.919	Impervious Runoff coeffi	cient"
"	0.100	Impervious Ia/S coeffici	ent"
"	0.518	Impervious Initial abstr	action"

"		1.279	0.000	0.000	0.000	c.m/sec"	
"		Catchment 201	P	Pervious	Impervious	Total Area	п
"		Surface Area	e	.568	2.503	3.071	hectare"
"		Time of concentra	ation 1	2.814	1.644	2.647	minutes"
"		Time to Centroid	1	.09.664	86.432	88.518	minutes"
"		Rainfall depth	7	7.647	77.647	77.647	mm"
"		Rainfall volume	4	41.14	1943.41	2384.55	c.m"
"		Rainfall losses	4	6.643	6.306	13.768	mm"
"		Runoff depth	3	1.004	71.341	63.879	mm"
"		Runoff volume	1	.76.14	1785.58	1961.72	c.m"
"		Runoff coefficier	nt e	.399	0.919	0.823	"
"		Maximum flow	e	.080	1.262	1.279	c.m/sec"
"	40	HYDROGRAPH Add Ru	unoff "				
"	4	Add Runoff "					
"		1.279	1.279	0.000	0.000"		
"	54	POND DESIGN"					
"	1.279	Current peak f	flow	c.m/sec"			
"	0.708	Target outflow	v c.m	i/sec"			
"	1961.7	Hydrograph vo	lume	c.m"			
"	4.	Number of stag	ges"				
"	399.000	Minimum water	level	metre"			
"	402.190	Maximum water	level	metre"			
"	399.000	Starting water	r level	metre"			
"	e	Keep Design Da	ata: 1 =	• True; 0 =	= False"		
"		Level Discha	arge	Volume"			
"		399.000 0	.000	0.000"			
		399.300 0.04	4841 1.	01E-05"			
		401.000 0.4	4512 10	88.490"			
		402.190 0.5	5999 10	88.490"			
	1.	OUTFLOW PIPE"					
		Upstream Downst	tr'm	Pipe	Pipe Ma	anning	Entry"
		invert inv	/ert	Length Di	Lameter	'n' Io	ss Ke"
		399.000 398.	.800	20.000	0.450	0.013	0.500"
		Peak outflow		0.38	32 C.m/S	5C	
		Maximum level		400.71	LS metre		
		Maximum storage		905.80	by C.M		
		Centroidal lag	270	2.02	20 nours	/	
	40		.2/9 .ino	0.382 1"	0.000 C.m	sec	
	40	Combine "	Dine	T			
	1	Nodo #"					
	T						
		Maximum flow		<u>م</u> م	22 cm/c	oc"	
		Hydrograph yolum	`	1962 93	52 C.III/SU 09 c.m."	20	
		1 270	- 1 270	0 383	0 382"		
	40	HVDROGRADH Ctant	_ Now Т	nihutany"	0.502		
	יד י זי	Start - Now T	i wew I	,"			
	2	1 27Q		6 282	0 382"		
	33	CATCHMENT 202"	0.000	0.002	0.902		
	1	Triangular SCG	5"				
	-	in rangeral Sec	-				

"	1	Equal length"						
"	1	SCS method"						
"	202	Uncontrolled Are	ea to W.	R.7 (Sou	utheast)"			
"	68.000	% Impervious"						
"	0.240	Total Area"						
"	5.000	Flow length"						
"	2.000	Overland Slope"						
"	0.077	Pervious Area"						
	5.000	Pervious length						
	2.000	Pervious slope"						
	0.163	Impervious Area						
	5.000	Impervious leng	th"					
	2.000	Impervious slope	e"					
	0.250	Pervious Manning	g 'n'"					
	/5.000	Pervious SCS Cui	rve No."					
	0.397	Pervious Runott	coettic	ient				
	0.100	Pervious la/S co	oetticie 1 skatus	nt"				
	8.40/	Tenonuious Initia.	ing 'n'"	CTION				
	00.00	Impervious Mann.	ting n Cupyo No					
	98.000	Impervious SCS (ff cooff	· iciont"				
	0.044	Impervious Runo	coeffic	iont"				
	0.100	0.100 Impervious Id/S COEFFICIENC 0.519 Impervious Initial abstraction"						
	0.510	0 092 (1 003 C	0 382	0 382	c m/sec"		
	Ca	atchment 202	D.000 Per	vious	Impervious	Total Area		
	Su	Inface Area	0.0	77	0.163	0.240	hectare"	
	Ti	me of concentrat:	ion 4.3	73	0.561	1.252	minutes"	
	Ti	me to Centroid	99.	145	85.312	87.818	minutes"	
	Ra	infall depth	77.	647	77.647	77.647	mm"	
"	Ra	infall volume	59.	63	126.72	186.35	c.m"	
"	Ra	infall losses	46.	830	12.078	23.199	mm"	
"	Ru	noff depth	30.	817	65.569	54.449	mm"	
"	Ru	noff volume	23.	67	107.01	130.68	c.m"	
"	Ru	noff coefficient	0.3	97	0.844	0.701	"	
"	Ма	ximum flow	0.0	15	0.083	0.092	c.m/sec"	
"	40 HY	DROGRAPH Add Rung	off "					
"	4	Add Runoff "						
"		0.092	0.092	0.382	0.382"			
"	40 HY	DROGRAPH Copy to	Outflow					
	8	Copy to Outflow						
		0.092	0.092	0.092	0.382"			
	40 HY	DROGRAPH Combin	ne 1"					
	6	Combine "						
	1	Node #"						
		IO W.R./"		0.44				
	Ма	XIMUM TIOW		0.40	09 C.m/s	ec		
	Ну	urograph Volume	0 000	2093.60	20 C.M"			
	10 LV	0,092 6 (DRACRADH Stant	Now Tot	290.0 "עפייט	0.409			
	י+ט חי רי	Stant - Now Toil	New ICL	bucary				
	Z	Juli - New ICI	bucary					

"		0.092 0	.000	0.092	0.409"		
"	33 CA	TCHMENT 203"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	1	SCS method"					
"	203	Uncontrolled to N	W.R.7 ((Northeas	t)"		
"	53.100	% Impervious"					
"	0.124	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope"					
	0.058	Pervious Area"					
	5.000	Pervious length"					
	2.000	Pervious slope"					
	0.066	Impervious Area"					
	5.000	Impervious lengt	n"				
	2.000	Impervious slope					
	0.250	Pervious Manning	'n'"	_			
	75.000	Pervious SCS Cur	ve No.'				
	0.397	Pervious Runott	coettic	cient"			
	0.100	Pervious Ia/S co	etticie	ent"			
	8.46/	Pervious Initial	abstra	action"			
	0.015	Impervious Manni	ng 'n''				
	98.000	Impervious SCS C	urve No)." [!!			
	0.844	Impervious Runot	г соеті	ricient			
	0.100	Impervious Ia/S	COETTIC	cient "naction"			
	0.518				0 100	m/soc"	
	Ca	0.040 0	.000 Dor		Tmpopyjous	Total Anoa	
	Ca	inface Area		VI0U5		0 124	hoctoro"
	Ti	me of concentration	o.0	272	0.000	1 679	minutes"
	Ti	me to Centroid	99	145	85 312	89 370	minutes"
	Ra	infall denth	77	. 647	77.647	77.647	mm"
	Ra	infall volume	45	16	51.13	96.28	c"
	Ra	infall losses	46	.830	12.078	28.377	mm"
	Ru	noff depth	30.	.817	65.569	49.271	mm"
"	Ru	noff volume	17.	.92	43.17	61.10	c.m"
"	Ru	noff coefficient	0.3	397	0.844	0.635	"
"	Ма	ximum flow	0.0	912	0.033	0.040	c.m/sec"
"	40 HY	DROGRAPH Add Runo [.]	ff "				
"	4	Add Runoff "					
"		0.040 0	.040	0.092	0.409"		
"	40 HY	DROGRAPH Copy to	Outflow	v"			
"	8	Copy to Outflow"					
"		0.040 0	.040	0.040	0.409"		
"	40 HY	DROGRAPH Combine	e 1'	1			
n	6	Combine "					
n	1	Node #"					
"		To W.R.7"					
u	Ма	ximum flow		0.42	.3 c.m/se	ec"	
"	Ну	drograph volume		2154.70	2 c.m"		

"		0.040 0.04	40 0.040	0.423"		
"	40 HY	DROGRAPH Start - New	w Tributary"			
"	2	Start - New Tribut	ary"			
"		0.040 0.0	00 0.040	0.423"		
"	33 CA	TCHMENT 204"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	1	SCS method"				
"	204	Uncontrolled to We	tland A (Sout	thwest)"		
"	48.800	% Impervious"		·		
"	0.763	Total Area"				
"	20.000	Flow length"				
"	3.000	Overland Slope"				
"	0.391	Pervious Area"				
"	20.000	Pervious length"				
"	3.000	Pervious slope"				
"	0.372	Impervious Area"				
"	20.000	Impervious length"				
"	3.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious SCS Curve	No."			
"	0.399	Pervious Runoff co	efficient"			
"	0.100	Pervious Ia/S coef	ficient"			
"	8.467	Pervious Initial a	bstraction"			
"	0.015	Impervious Manning	'n'"			
"	98.000	Impervious SCS Cur	ve No."			
"	0.908	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	efficient"			
"	0.518	Impervious Initial	abstraction			
"		0.212 0.0	00 0.040	0.423 0	:.m/sec"	
"	Ca	tchment 204	Pervious	Impervious	Total Area	
"	Su	irface Area	0.391	0.372	0.763	hectare"
"	Ti	me of concentration	8.896	1.142	3.586	minutes"
"	Ti	me to Centroid.	104.745	85.791	91.767	minutes"
"	Ra	infall depth	77.647	77.647	77.647	mm"
"	Ra	infall volume	303.33	289.12	592.45	c.m"
"	Ra	infall losses	46.691	7.111	27.376	mm"
"	Ru	noff depth	30.956	70.537	50.272	mm"
"	Ru	noff volume	120.93	262.64	383.57	c.m"
"	Ru	noff coefficient	0.399	0.908	0.647	
"	Ma	iximum flow	0.065	0.192	0.212	c.m/sec"
"	40 HY	DROGRAPH Add Runoff				
"	4	Add Runoff "				
"		0.212 0.2	12 0.040	0.423"		
u	40 HY	DROGRAPH Copy to Ou	tflow"			
u	8	Copy to Outflow"				
u		0.212 0.2	12 0.212	0.423"		
	40 HY	DROGRAPH Combine	2"			
	6	Combine "				
"	2	Node #"				

"	Total Site Area"					
"	Maximum flow		0.21	.2 c.m/se	ec"	
"	Hydrograph volume		383.57	′3 c.m"		
n	0.212 0.21	.2	0.212	0.212"		
"	40 HYDROGRAPH Start - New	ı Tribu	itary"			
"	2 Start - New Tributa	iry"				
"	0.212 0.00	0	0.212	0.212"		
"	33 CATCHMENT 205"					
"	1 Triangular SCS"					
"	1 Equal length"					
"	1 SCS method"					
"	205 Uncontrolled Area t	o Wetl	and B	(Northwest)) "	
"	38.500 % Impervious"					
"	0.260 Total Area"					
"	20.000 Flow length"					
"	3.000 Overland Slope"					
"	0.160 Pervious Area"					
"	20.000 Pervious length"					
"	3.000 Pervious slope"					
"	0.100 Impervious Area"					
"	20.000 Impervious length"					
"	3.000 Impervious slope"					
	0.250 Pervious Manning 'n					
"	75.000 Pervious SCS Curve	No."				
"	0.399 Pervious Runoff coe	fficie	ent"			
	0.100 Pervious Ia/S coeff	icient				
	8.467 Pervious Initial ab	stract	ion"			
	0.015 Impervious Manning	'n'"				
	98.000 Impervious SCS Curv	'e No."				
	0.908 Impervious Runoff c	oeffic	ient"			
	0.100 Impervious Ia/S coe	tticie	ent"			
	0.518 Impervious Initial	abstra	iction"		<i>,</i>	
	0.060 0.00		0.212	0.212 0	.m/sec"	
	Catchment 205	Pervi	ous	Impervious	lotal Area	
	Surface Area	0.166) -	0.100	0.260	nectare"
	Time of concentration	8.896		1.142	4.338	minutes
	lime to Centrola	104./	45	85./91	93.602	minutes
		12/ 1	+/ C	//.04/	77.047	
		124.1	.0	77.75	201.00	C.III
	Runoff donth	20.05	5 5	7.111	JI.4JJ	
	Runoff volume	10.55	,	70.557	120 11	
	Runoff coefficient	49.JC	, A	0.01	0 595	
	Maximum flow	0.595	, ,	0.000	0.955	c m/sec"
	40 HYDROGRAPH Add Rupoff	"		0.052		
	Δ Δdd Runoff "					
	0_060 0_06	6	0.212	0.212"		
	40 HYDROGRAPH Conv to Out	flow"	J ± Ł			
"	8 Copy to Outflow"					
"	0.060 0.06	0	0.060	0.212"		

"	40	HYDRC	OGRAPH C	ombine	2"				
"		6 Cc	ombine "						
"		2 No	ode #"						
"		Тс	otal Site	Area"					
"		Maxim	num flow			0.272	c.m/	sec"	
"		Hvdro	ograph vol	ume		503.680	c.m"		
			0.060	0.060		0.060	0.272		
"	40	HYDRC)GRAPH C	onfluence		1"			
"		7 Cc	onfluence	"					
"		1 Nc	ode #"						
"		Тс	W.R.7"						
"		Maxim	num flow			0.423	c.m/	sec"	
"		Hydro	ograph vol	ume		2154.702	c.m"		
"		2	0.060	0.423		0.060	0.000	п	
"	40	HYDRC	GRAPH Cop	y to Outf	low"				
"		8 Cc	py to Out	flow"					
"			0.060	0.423		0.423	0.000	п	
"	40	HYDRC)GRAPH C	ombine	2"				
"		6 Cc	ombine "						
"		2 No	ode #"						
"		Тс	otal Site	Area"					
"		Maxim	num flow			0.640	c.m/	sec"	
"		Hydro	ograph vol	ume		2658.382	c.m"		
"		2	0.060	0.423		0.423	0.640		
"	38	START	/RE-START	TOTALS 1					
"		3 Ru	unoff Tota	ls on EXI	Т"				
"		Total	L Catchmen	t area				4.458	hectare"
"		Total	l Impervio	us area				3.204	hectare"
"		Total	L % imperv	ious			7	1.879"	
"	19	EXIT"							

"		MIDUSS Output	·····>"
"		MIDUSS version	Version 2.25 rev. 473"
"		MIDUSS created	Sunday, February 7, 2010"
"	10	Units used:	ie METRIC"
"		Job folder:	Q:\51060\100\Preliminary Design\SWM\"
"			FS-SWM Report\Post"
"		Output filename:	100YR - POST C.out"
"		Licensee name:	Α"
"		Company	"
"		Date & Time last used:	8/4/2023 at 3:53:57 PM"
"	31 T	IME PARAMETERS"	
"	5.000	Time Step"	
"	180.000	Max. Storm length"	
"	1500.000	Max. Hydrograph"	
"	32 S	TORM Chicago storm"	
"	1	Chicago storm"	
"	4688.000	Coefficient A"	
"	17.000	Constant B"	
"	0.962	Exponent C"	
"	0.400	Fraction R"	
"	180.000	Duration"	
"	1.000	Time step multiplier"	
"	м	laximum intensity	239.650 mm/hr"
"	Т	otal depth	87.263 mm"
"	6	100hyd Hydrograph exte	ension used in this file"
"	33 C	ATCHMENT 201"	
"	1	Triangular SCS"	
"	1	Equal length"	
"	1	SCS method"	
"	201	Controlled Area to W.R.7	′(Southeast)"
"	81.500	% Impervious"	
"	3.071	Total Area"	
"	30.000	Flow length"	
"	2.000	Overland Slope"	
"	0.568	Pervious Area"	
"	30.000	Pervious length"	
"	2.000	Pervious slope"	
"	2.503	Impervious Area"	
"	30.000	Impervious length"	
"	2.000	Impervious slope"	
"	0.250	Pervious Manning 'n'"	
"	75.000	Pervious SCS Curve No."	
"	0.434	Pervious Runoff coeffici	lent"
"	0.100	Pervious Ia/S coefficier	it"
"	8.467	Pervious Initial abstrac	tion"
"	0.015	Impervious Manning 'n'"	
"	98.000	Impervious SCS Curve No.	
"	0.925	Impervious Runoff coeffi	cient"
"	0.100	Impervious Ia/S coeffici	lent"
"	0.518	Impervious Initial abstr	raction"

"		1.444	0.000	0.000	0.000	c.m/sec"	
"		Catchment 201	Pe	ervious	Impervious	Total Area	
"		Surface Area	0.	568	2.503	3.071	hectare"
"		Time of concentra	ation 11	L.799	1.574	2.558	minutes"
"		Time to Centroid	16	97.618	86.019	88.096	minutes"
"		Rainfall depth	87	7.263	87.263	87.263	mm"
"		Rainfall volume	49	95.77	2184.09	2679.86	c.m"
"		Rainfall losses	49	9.406	6.508	14.444	mm"
"		Runoff depth	37	7.858	80.755	72.819	mm"
"		Runoff volume	21	15.08	2021.19	2236.27	c.m"
"		Runoff coefficie	nt 0.	434	0.925	0.834	
"		Maximum flow	0.	102	1.420	1.444	c.m/sec"
"	40	HYDROGRAPH Add Ru	unoff "				
"		4 Add Runoff "					
"		1.444	1.444	0.000	0.000"		
"	54	POND DESIGN"					
"	1.44	4 Current peak [.]	flow c	.m/sec"			
"	0.70	8 Target outflow	v c.m/	'sec"			
"	2236.	3 Hydrograph vo	lume d	:.m"			
"	4	. Number of stag	ges"				
"	399.00	0 Minimum water	level	metre"			
"	402.19	0 Maximum water	level	metre"			
"	399.00	0 Starting water	r level	metre"			
"		0 Keep Design Da	ata: 1 =	True; 0 =	= False"		
"		Level Discha	arge \	/olume"			
"		399.000 0	.000	0.000"			
"		399.300 0.04	4841 1.0	01E-05"			
"		401.000 0.4	4512 108	38.490"			
"		402.190 0.1	5999 108	38.490"			
"	1	. OUTFLOW PIPE"					
"		Upstream Downs	tr'm	Pipe	Pipe M	anning	Entry"
"		invert in	vert l	ength Di	iameter	'n' lo	ss Ke"
"		399.000 398	.800 2	20.000	0.450	0.013	0.500"
		Peak outflow		0.43	35 c.m/s	ec"	
		Maximum level		400.93	37 metre		
		Maximum storage		1047.94	19 c.m"		
		Centroidal lag		2.03	31 hours"	<i>,</i>	
	40	1.444 1	.444	0.435	0.000 c.m	/sec"	
	40	HYDROGRAPH Com	oine 1				
		6 Combine					
		IO W.R./"					
		Maximum flow	_	0.4:	35 C.m/s	ec	
		Hydrograph Volume	2 4 4 4	2236.64	49 C.M."		
	40		1.444 Nov. T	0.435	0.435"		
	40	HIDKUGKAPH STart	- New Ir	'ibutary"			
			o oco	0 475			
	22		0.000	0.435	0.435		
	22	CAICHMENI 202	- "				
		initangutar SC	2				

"	1	Equal length"									
"	1	SCS method"									
"	202	Uncontrolled Area	a to W.R.7 (Southeast)"							
"	68.000	% Impervious"									
"	0.240	Total Area"									
"	5.000	Flow length"									
"	2.000	Overland Slope"									
"	0.077	Pervious Area"									
	5.000	Pervious length"	ervious length"								
	2.000	Pervious slope"	rvious slope"								
	0.163	Impervious Area"									
	5.000	Impervious length	n" "								
	2.000	Impervious slope									
	0.250	Pervious Manning	'n'"								
	/5.000	Pervious SCS Curv	ve No." t"								
	0.429	Pervious Runott (coefficient								
	0.100	Pervious Ia/S coe	etticient shetpsetion	л							
	8.40/ 0.01E	Tenonyjous Manni	adstraction								
	0.013	Impervious Mannin	Ig II Inve No "								
	0 845	Impervious SCS CC	f coefficier	+"							
	0.045	45 Impervious Runott COETICIENC 00 Impervious Is/S coefficient"									
	0.518	518 Impervious Initial abstraction"									
	0.910	0.104 0	.000 0.4	35 0.43	5 c.m/sec"						
	Ca	atchment 202	Pervious	Impervio	us Total Area	a "					
"	Su	urface Area	0.077	0.163	0.240	hectare"					
"	Ti	me of concentration	on 4.027	0.537	1.210	minutes"					
"	Ti	lme to Centroid	97.990	84.967	87.478	minutes"					
"	Ra	ainfall depth	87.263	87.263	87.263	mm"					
"	Ra	infall volume	67.02	142.41	209.43	c.m"					
"	Ra	infall losses	49.842	13.522	25.145	mm"					
"	Ru	noff depth	37.422	73.741	62.119	mm"					
"	Ru	noff volume	28.74	120.35	149.09	c.m"					
"	Ru	noff coefficient	0.429	0.845	0.712	"					
"	Ma	aximum flow	0.019	0.092	0.104	c.m/sec"					
"	40 HY	DROGRAPH Add Runo	ff "								
"	4	Add Runoff "									
		0.104 0.	.104 0.4	35 0.43	5"						
	40 HY	DROGRAPH Copy to (Outflow"								
	8	Copy to Outflow"									
	40	0.104 0.	.104 0.1	.04 0.43	5"						
	40 HY	DRUGRAPH COMDINE	5 T.								
	6	Compine "									
	T										
	Ma	IO W.K./	c	165 cm	/coc"						
	Mc Llv	INTINUM ITOW	2305	, 405 C.III	, 3CC						
	пу		 	04 0 <u>0</u> 4	5"						
	40 HV	DROGRAPH Start - M	New Tributar	v"	<i>,</i>						
		Start - New Trih	utarv"	3							
	-										

"		0.104	0.000	0.104	0.465"		
"	33 CA	TCHMENT 203"					
"	1	Triangular SCS'	1				
"	1	Equal length"					
"	1	SCS method"					
"	203	Uncontrolled to	0 W.R.7	′(Northeas	t)"		
"	53.100	% Impervious"					
"	0.124	Total Area"					
"	5.000	Flow length"					
"	2.000	Overland Slope'	1				
"	0.058	Pervious Area"					
"	5.000	Pervious length	า"				
"	2.000	Pervious slope'	1				
"	0.066	Impervious Area	a"				
"	5.000	Impervious leng	gth"				
"	2.000	Impervious slop	e"				
"	0.250	Pervious Mannir	ng 'n'"				
"	75.000	Pervious SCS Cu	urve No	."			
"	0.429	Pervious Runoff	coeff	icient"			
"	0.100	Pervious Ia/S o	coeffic	ient"			
"	8.467	Pervious Initia	al abst	raction"			
"	0.015	Impervious Manr	ning 'n				
"	98.000	Impervious SCS	Curve	No."			
"	0.845	Impervious Runo	off coe	fficient"			
"	0.100	Impervious Ia/S	5 coeff	icient"			
"	0.518	Impervious Init	ial ab	straction"			
"		0.047	0.000	0.104	0.465 0	.m/sec"	
"	Ca	tchment 203	Р	Pervious	Impervious	Total Area	
"	Su	rface Area	0	.058	0.066	0.124	hectare"
"	Ti	me of concentrat	ion 4	.027	0.537	1.617	minutes"
"	Ti	me to Centroid	9	7.990	84.967	88.998	minutes"
"	Ra	infall depth	8	37.263	87.263	87.263	mm"
"	Ra	infall volume	5	0.75	57.46	108.21	c.m"
"	Ra	infall losses	4	9.841	13.522	30.556	mm"
"	Ru	noff depth	3	7.422	73.741	56.707	mm"
"	Ru	noff volume	2	1.76	48.55	70.32	c.m"
"	Ru	noff coefficient	: 0	.429	0.845	0.650	
"	Ма	ximum flow	0	.015	0.037	0.047	c.m/sec"
"	40 HY	DROGRAPH Add Rur	noff "				
"	4	Add Runoff "					
"		0.047	0.047	0.104	0.465"		
"	40 HY	DROGRAPH Copy to	0utfl	.ow"			
"	8	Copy to Outflow	<i>.</i>				
"		0.047	0.047	0.047	0.465"		
"	40 HY	DROGRAPH Combi	Ine	1"			
"	6	Combine "					
	1	Node #"					
		To W.R.7"					
"	Ма	ximum flow		0.48	1 c.m/se	2C"	
"	Hy	drograph volume		2456.04	6 c.m"		

"		0.047 0.04	47 0.047	0.481"		
"	40 HY	DROGRAPH Start - New	w Tributary"			
"	2	Start - New Tributa	ary"			
"		0.047 0.00	0.047	0.481"		
"	33 CA	TCHMENT 204"				
"	1	Triangular SCS"				
"	1	Equal length"				
"	1	SCS method"				
"	204	Uncontrolled to We	tland A (Sout	thwest)"		
"	48.800	% Impervious"	·	·		
"	0.763	Total Area"				
"	20.000	Flow length"				
"	3.000	Overland Slope"				
"	0.391	Pervious Area"				
"	20.000	Pervious length"				
"	3.000	Pervious slope"				
"	0.372	Impervious Area"				
"	20.000	Impervious length"				
"	3.000	Impervious slope"				
"	0.250	Pervious Manning '	n'"			
"	75.000	Pervious SCS Curve	No."			
"	0.434	Pervious Runoff co	efficient"			
"	0.100	Pervious Ia/S coef	ficient"			
"	8.467	Pervious Initial a	bstraction"			
"	0.015	Impervious Manning	'n'"			
"	98.000	Impervious SCS Curv	ve No."			
"	0.913	Impervious Runoff	coefficient"			
"	0.100	Impervious Ia/S co	efficient"			
"	0.518	Impervious Initial	abstraction'	•		
"		0.237 0.00	0.047	0.481 0	:.m/sec"	
"	Ca	tchment 204	Pervious	Impervious	Total Area	п
"	Su	irface Area	0.391	0.372	0.763	hectare"
"	Ti	me of concentration	8.191	1.093	3.454	minutes"
"	Ti	me to Centroid.	103.148	85.426	91.321	minutes"
"	Ra	infall depth	87.263	87.263	87.263	mm"
"	Ra	infall volume	340.90	324.92	665.82	c.m"
"	Ra	infall losses	49.403	7.569	28.988	mm"
"	Ru	noff depth	37.860	79.694	58.275	mm"
"	Ru	noff volume	147.90	296.74	444.64	c.m"
"	Ru	noff coefficient	0.434	0.913	0.668	"
"	Ma	iximum flow	0.083	0.215	0.237	c.m/sec"
"	40 HY	DROGRAPH Add Runoff	"			
"	4	Add Runoff "				
		0.237 0.23	37 0.047	0.481"		
	40 HY	DROGRAPH Copy to Ou	t+low"			
	8	Copy to Outflow"		_		
	10	0.237 0.23	37 0.237	0.481"		
	40 HY	DRUGRAPH Combine	2"			
	6	Combine "				
••	2	Node #"				

"	Total Site Area"					
"	Maximum flow		0.23	37 c.m/se	ec"	
"	Hydrograph volume		444.64	10 c.m"		
"	0.237 0.23	37	0.237	0.237"		
"	40 HYDROGRAPH Start - New	w Tribu	utary"			
"	2 Start - New Tributa	ary"				
"	0.237 0.0	90	0.237	0.237"		
"	33 CATCHMENT 205"					
"	1 Triangular SCS"					
"	1 Equal length"					
"	1 SCS method"					
"	205 Uncontrolled Area	to Wet]	Land B	(Northwest))"	
"	38.500 % Impervious"					
"	0.260 Total Area"					
"	20.000 Flow length"					
"	3.000 Overland Slope"					
"	0.160 Pervious Area"					
"	20.000 Pervious length"					
"	3.000 Pervious slope"					
"	0.100 Impervious Area"					
	20.000 Impervious length"					
	3.000 Impervious slope"					
	0.250 Pervious Manning '	n'"				
	75.000 Pervious SCS Curve	No."				
	0.434 Pervious Runoff co	efficie	ent"			
	0.100 Pervious la/S coet	ficient	t" "			
	8.46/ Pervious Initial al	bstraci	tion"			
	0.015 Impervious Manning	'n'"				
	98.000 Impervious SCS Cur	ve No.				
	0.913 Impervious Runott	coettic	cient"			
	0.100 Impervious Ia/S co	etticie	ent setion'			
	0.518 Impervious Initial	abstra		0 227		
	0.073 0.00	Bopy	0.237	0.257 (Total Anoa	
		0 160	LOUS a	a 100	A 260	hoctono"
	Time of concentration	Q 101	9 1	1 003	0.200 1 156	minutes"
	Time to Centroid	103 1	L 1 / Q	25 126	4.130	minutes
	Rainfall denth	87 26	53	87 263	87 263	mm"
	Rainfall volume	139 4	53	87.35	226 88	
	Rainfall losses	49 40	22	7 569	33 297	mm"
	Runoff denth	37.86	50	79,694	53,966	mm"
	Runoff volume	60.54	1	79.77	140.31	c.m"
	Runoff coefficient	0.434	1	0.913	0.618	"
	Maximum flow	0.034	1	0.058	0.073	c.m/sec"
	40 HYDROGRAPH Add Runoff	"				,
	4 Add Runoff "					
"	0.073 0.0	73	0.237	0.237"		
"	40 HYDROGRAPH Copy to Out	tflow"	-	_		
"	8 Copy to Outflow"					
"	0.073 0.0	73	0.073	0.237"		

"	40	HYDROGRAPH Combine 2"	
"		Combine "	
"		Node #"	
"		Total Site Area"	
"		Maximum flow	0.304 c.m/sec"
"		Hvdrograph volume 58	4.953 c.m"
"		0.073 0.073 0.	073 0.304"
"	40	HYDROGRAPH Confluence 1"	
"		Confluence "	
"		Node #"	
"		To W.R.7"	
"		Maximum flow	0.481 c.m/sec"
"		Hydrograph volume 245	6.046 c.m"
"		0.073 0.481 0.	073 0.000"
"	40	HYDROGRAPH Copy to Outflow"	
"		Copy to Outflow"	
"		0.073 0.481 0.	481 0.000"
"	40	HYDROGRAPH Combine 2"	
"		Combine "	
"		Node #"	
"		Total Site Area"	
"		Maximum flow	0.749 c.m/sec"
"		Hydrograph volume 304	1.003 c.m"
"		0.073 0.481 0.	481 0.749"
"	38	START/RE-START TOTALS 1"	
"		Runoff Totals on EXIT"	
"		Total Catchment area	4.458 hectare"
"		Total Impervious area	3.204 hectare"
"		Total % impervious	71.879"
"	19	EXIT"	

Stormceptor Sizing Output

Province:	Ontario		Project Na	me:	350 Wellington Ro	ad 7	
City:	Elora		Project Nu	mber:	51060-100		
Nearest Rainfall Station:	WATERLOO WELLINGTO	ON AP	Designer N	ame:	Tyler Arndt		
Climate Station Id:	6149387		Designer C	ompany:	MTE Consultants		
Years of Rainfall Data:	34		Designer E	mail:	tarndt@mte85.cor	n	
			Designer P	hone:	519-743-6500		
Site Name:	Catchment 201		EOR Name	:			
Drainage Area (ha):	3.071		EOR Comp	any:			
% Imperviousness:	81.50		EOR Email				
Runoff (Coefficient 'c': 0.78		2011110110				
Particle Size Distribution:	Fine				Net Annua	l Sedime	nt
Target TSS Removal (%): 80.0					(TSS) Load	Reductio	n
Required Water Quality Run	off Volume Capture (%):	90.00]	Sizing S	ummary	
Estimated Water Quality Flow Rate (L/s):		91.80			Stormceptor	TSS Rem	oval
Oil / Fuel Spill Risk Site?		Yes			Model	Provided	l (%)
Upstream Flow Control?		No			EFO4	52	
Peak Conveyance (maximum) Flow Bate (L/s):]	EFO6	68	
Influent TSS Concentration (mg/L)·]	EFO8	78	
Estimated Average Annual Se	ediment Volume (I /vr):	2391			EFO10	84	
		1001		J	EFO12	88	
			Recom	nended Sto	rmceptor EFO	Model:	EFO1
	Fstim	nated Net A	Annual Sec	diment (TSS) Load Reduct	ion (%):	84
	Lotin		Watar Ou	ality Pupof	Volumo Cont	uro (%).	 0
			water Qu	anty Runon	volume capt	ure (<i>1</i> 0).	2 31

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV *Procedure for Laboratory Testing of Oil-Grit Separators* for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dercent
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)
0.50	8.5	8.5	3.37	202.0	28.0	100	8.5	8.5
1.00	18.3	26.8	6.74	404.0	55.0	100	18.3	26.8
2.00	14.4	41.3	13.47	808.0	111.0	95	13.7	40.5
3.00	10.2	51.5	20.21	1212.0	166.0	88	9.0	49.5
4.00	8.0	59.5	26.94	1617.0	221.0	82	6.6	56.1
5.00	6.9	66.4	33.68	2021.0	277.0	80	5.5	61.6
6.00	5.9	72.3	40.42	2425.0	332.0	77	4.5	66.1
7.00	3.8	76.1	47.15	2829.0	388.0	75	2.8	69.0
8.00	2.6	78.7	53.89	3233.0	443.0	72	1.9	70.8
9.00	2.5	81.1	60.62	3637.0	498.0	70	1.7	72.5
10.00	2.2	83.3	67.36	4042.0	554.0	67	1.5	74.0
11.00	2.5	85.8	74.10	4446.0	609.0	65	1.6	75.6
12.00	2.0	87.8	80.83	4850.0	664.0	64	1.3	76.9
13.00	1.6	89.4	87.57	5254.0	720.0	64	1.0	77.9
14.00	0.9	90.4	94.30	5658.0	775.0	63	0.6	78.5
15.00	1.6	91.9	101.04	6062.0	830.0	63	1.0	79.5
16.00	1.1	93.0	107.78	6467.0	886.0	62	0.7	80.2
17.00	1.0	94.0	114.51	6871.0	941.0	62	0.6	80.8
18.00	0.5	94.6	121.25	7275.0	997.0	62	0.3	81.2
19.00	0.2	94.8	127.98	7679.0	1052.0	60	0.1	81.3
20.00	0.6	95.4	134.72	8083.0	1107.0	59	0.4	81.7
21.00	0.6	96.1	141.46	8487.0	1163.0	58	0.4	82.0
22.00	0.3	96.4	148.19	8892.0	1218.0	57	0.2	82.2
23.00	0.8	97.2	154.93	9296.0	1273.0	55	0.5	82.7
24.00	0.4	97.6	161.66	9700.0	1329.0	54	0.2	82.9
25.00	0.2	97.8	168.40	10104.0	1384.0	53	0.1	83.0
30.00	0.9	98.7	202.08	12125.0	1661.0	44	0.4	83.4
35.00	0.8	99.5	235.76	14146.0	1938.0	38	0.3	83.7
40.00	0.2	99.7	269.44	16166.0	2215.0	33	0.1	83.8
45.00	0.3	100.0	303.12	18187.0	2491.0	29	0.1	83.8
			Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	84 %

Climate Station ID: 6149387 Years of Rainfall Data: 34

Maximum Pipe Diameter / Peak Conveyance															
Stormceptor EF / EFO	r Model Diameter		tormceptor EF / EFO Model Diar		tormceptor EF / EFO Model Diameter		Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame	et Pipe eter	Max Out Diame	let Pipe eter	Peak Cor Flow	nveyance Rate
(m) (ft)			(mm)	(in)	(mm)	(in)	(L/s)	(cfs)							
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15						
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35						
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60						
EF10 / EFO10 3.0 10		90	1828	72	1828	72	2830	100							
EF12 / EF012	EF12 / EF012 3.6 12		90	1828	72	1828	72	2830	100						

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor[®] EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor[®] EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

- 0° 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.
- 45° 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

	i onutant capacity											
Stormceptor EF / EFO	Model Diameter		Depth (Outlet Pipe Invert to Sump Floor)		et to Oil Volume ')		Oil Volume Recommended Sediment Maintenance Depth *		RecommendedMaximumVolumeSedimentSediment Volume *Maintenance Depth *Sediment Volume *		Maxim Sediment I	ium Mass **
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

Pollutant Capacity

*Increased sump depth may be added to increase sediment storage capacity ** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To
Patent-pending enhanced flow treatment	Superior, verified third-party	Regulator, Specifying & Design Engineer
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,
and retention for EFO version	locations	Site Owner
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer
Minimal drop between inlet and outlet	Site installation ease	Contractor
Large diameter outlet riser for inspection	Easy maintenance access from grade	Maintenance Contractor & Site Owner

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:

6 ft (1829 mm) Diameter OGS Units:

8 ft (2438 mm) Diameter OGS Units:

10 ft (3048 mm) Diameter OGS Units:

12 ft (3657 mm) Diameter OGS Units:

 $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall

Stormceptor[®]EF Sizing Report

remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.

3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.

3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 $L/min/m^2$ shall be assumed to be identical to the sediment removal efficiency at 40 $L/min/m^2$. No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 $L/min/m^2$.

3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators,** with results reported within the Canadian ETV or ISO 14034 ETV verification. This reentrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to

Stormceptor[®]EF Sizing Report

assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates (ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators.** However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

